scholarly journals speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing

2021 ◽  
Author(s):  
Raphael B. Di Roberto ◽  
Rocio Castellanos-Rueda ◽  
Fabrice S. Schlatter ◽  
Darya Palianina ◽  
Oanh T.P. Nguyen ◽  
...  

Chimeric antigen receptors (CARs) consist of an extracellular antigen-binding region fused to intracellular signaling domains, thus enabling customized T cell responses against target cells. Due to the low-throughput process of systematically designing and functionally testing CARs, only a small set of immune signaling domains have been thoroughly explored, despite their major role in T cell activation, effector function and persistence. Here, we present speedingCARs, an integrated method for engineering CAR T cells by signaling domain shuffling and functional screening by single-cell sequencing. Leveraging the inherent modularity of natural signaling domains, we generated a diverse library of 180 unique CAR variants, which were genomically integrated into primary human T cells by CRISPR-Cas9. Functional and pooled screening of the CAR T cell library was performed by co-culture with tumor cells, followed by single-cell RNA sequencing (scRNA-seq) and single-cell CAR sequencing (scCAR-seq), thus enabling high-throughput profiling of multi-dimensional cellular responses. This led to the discovery of several CAR variants that retained the ability to kill tumor cells, while also displaying diverse transcriptional signatures and T cell phenotypes. In summary, speedingCARs substantially expands and characterizes the signaling domain combinations suited for CAR design and supports the engineering of next-generation T cell therapies.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A108-A108
Author(s):  
Ancy Thomas ◽  
Emilia Dellacecca ◽  
Rohan Shivde ◽  
Nicola Lanki ◽  
Levi Barse ◽  
...  

BackgroundGangliosides are glycosphingolipids that are involved in cellular functions, including signal transduction, cell proliferation, differentiation, adhesion, and angiogenesis.1 We confirmed marked overexpression of GD3 in tumors associated with Tuberous Sclerosis complex (TSC) and proposed to evaluate the use of T cells expressing a second-generation chimeric antigen receptor (GD3CAR T-cells) for patient treatment. To evaluate the potency of GD3CAR T-cells targeting solid tumor cells, we performed in vitro assays using Tsc2 knockout, GD3 overexpressing tumor cells isolated from mice heterozygous for Tsc2. HEK293 cells transfected or not with an expression plasmid encoding the enzyme SIAT8, responsible for converting GM3 to GD3, were used as controls. Cell were subjected to cytotoxicity assays using live cell imaging, and single cell cytokine secretome analysis among CD4 or CD8 CAR T-cells.MethodsGD3CAR construct generated includes an anti-GD3 antibody single-chain antibody fragment and intracellular sequence of CD28 and CD3 zeta chain.2 Mouse T cells were transduced, and transduction was established by flow cytometry. GD3 expressing Tsc2-/- tumor cells or HEK cells were co cultured with untranduced or GD3CAR T-cells and cytotoxicity was measured using the Incucyte S3 system. Cytokine secretion patterns of CD4 and CD8 subpopulations of CAR T-cells were measured after coculture in a single cell polyfunctional strength mouse Isocode Chip (IsoPlexis). Secretory profiles of single cells were analyzed by IsoSpeak Software. IFNγ secretion was quantified by ELISA as a functional readout of T cell activity.ResultsTransduction efficiencies observed were upward of 70% live GD3 CAR T-cells with 96% transduction efficiency of CD4 T cells and 90% of CD8 T cells. The cytotoxicity assay in the Incucyte live-cell imaging system indicated 4-fold increased apoptosis (p=0.038) when target cells were co-cultured with GD3CAR T-cells. Both CD8 and CD4 T cells were efficiently transduced to express the GD3CAR. In single - cell cytokine analysis, both T cell subsets showed enhanced polyfunctionality with increased polyfunctional strength index (PSI) by 9 and 10-fold in the GD3CAR T-cells in the CD4 and CD8 populations, respectively. This was mainly attributed to effector, chemo-attractive and stimulatory cytokines IFNγ production was increased significantly in response to target cells expressing GD3ConclusionsBoth CD4 and CD8 GD3CAR T-cells express polyfunctional cytokine profiles in response to GD3 expressing tumor cells, and CAR T- cells were selectively cytotoxic to relevant tumor cells. The data suggests that GD3CAR T-cells may reduce tumor growth observed in patients with TSCAcknowledgementsThis study is supported by a Department of Defense grant W81XWH-17-TSCRP-CTRA- TS170066 to CLP.ReferencesYu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides-an overview. J Oleo Sci 2011;60(10):537–544.Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010;16(10):2769–2780.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2047-2047 ◽  
Author(s):  
Hiroshi Kotani ◽  
Gongbo Li ◽  
Jiqiang Yao ◽  
Tania E. Mesa ◽  
Jon Chen ◽  
...  

Abstract [Introduction] CD19 chimeric antigen receptor (CAR) T cell therapies have been approved by the FDA for children and young adults with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL) and adults with r/r large B-cell lymphoma. Recent reports about long-term follow-up of CD19 CAR T cell therapy in B-ALL (Maude et. al. NEJM 2018, Park et. al. NEJM 2018) suggest that the median event-free survival of children and young adult patients is longer than that of adult patients (Over 11 months versus 6.1 months). The reason for the difference between survival of pediatric and adult patient is unclear, but we hypothesize it is due to age-related changes in the T cells collected from patients. Therefore, we compared the function of CAR T cells derived from young or aged mice. [Methods] Young C57BL/6J (B6) mice (6-12 weeks) and aged B6 mice (³ 72 weeks) were used as donors for CAR T cell preparation. Four types of mouse specific CD19 CAR encoded GFP fusion proteins were evaluated with all having the same anti-CD19 scFv and CD8 hinge and transmembrane domains but differing in their intracellular domain (m19Δz: lacks the CD3ξ signaling domain, m19z: CD3ξ signaling domain only, m1928z: CD28 and CD3ξ signaling domains, m19-humBBz: 4-1BB and CD3ξ signaling domains). [Results] T cells isolated from the spleen of aged B6 mice were significantly fewer than those of young B6 mice. However, CAR transduction efficiency, viability and yield were similar between young and aged CAR T cells for each CAR group. All groups of aged CAR T cells predominate with CD8+ and effector-like phenotypes at the expense of CD4+ and memory-like phenotypes after CD19+ artificial antigen presenting cell (aAPC) stimulation (Fig. 1A-1B). Furthermore, compared to CAR T cells derived from young mice, aged CAR T cells (m19z, m1928z and m19BBz) exhibited superior cytotoxicity in a real-time cell analysis for CD19+ aAPC killing (Fig. 1C). Using our immune competent in vivo murine model, aged CAR T cells were short-lived and expanded poorly despite their superior in vitro cytotoxicity. To evaluate for potential mechanisms involving preferential production of effector-like CAR T cells from aged mice we performed gene-expression, as well as single cell secretory polyfunctional analyses. While the polyfunctional strength index (PSI) of CD8+ aged CAR T cells was higher for aged CAR T cells, the increased score was due mostly to abundant secretion of a chemokine (Fig. 1D). Furthermore, the RNA-DESeq analysis demonstrated increased expression of chemokines and perturbation of the EOMES/TBET transcription factor axis. RNA-DESeq also suggested that young CAR T cells were highly active in cell proliferation and cell differentiation whereas aged CAR T cells upregulated gene expression pathways that regulated responses to stimulus and exocytosis. [Conclusions] CAR T cells derived from aged mice exhibited enhanced cytotoxicity but shorter persistence and less memory-like phenotypes. Our results suggest that the difference of clinical outcome between younger patients and older patients may be due to an age-dependent CAR T cell phenotype that is reflected by its unique gene expression pattern, secretory profile, and/or transcription factor balance. In our future directions we are extending these observations to human CAR T cells and identifying potential methods to improve the function of aged CAR T cells. Disclosures Davila: Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 9 (3) ◽  
pp. e001877
Author(s):  
Irfan N Bandey ◽  
Jay R T Adolacion ◽  
Gabrielle Romain ◽  
Melisa Martinez Paniagua ◽  
Xingyue An ◽  
...  

BackgroundAdoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.MethodsTo identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.ResultsWith the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cells. Our single-cell profiling results directly demonstrate that inducible CD137 is feature of killer (and serial killer) T cells and this marks a different subset compared with the CD107apos (degranulating) subset of CAR T cells. Ligation of the induced CD137 with CD137 ligand (CD137L) leads to younger CD19 CAR T cells with sustained killing and lower exhaustion. We genetically modified CAR T cells to co-express CD137L, in trans, and this lead to a profound improvement in anti-tumor efficacy in leukemia and refractory ovarian cancer models in mice.ConclusionsBroadly, our results illustrate that while non-killer T cells are reflective of population heterogeneity, integrated single-cell profiling can enable identification of mechanisms that can enhance the function/proliferation of killer T cells leading to direct anti-tumor benefit.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A130-A130
Author(s):  
Jingmei Hsu ◽  
Eric von Hofe ◽  
Michael Hsu ◽  
Koen Van Besien ◽  
Thomas Fahey ◽  
...  

BackgroundThe use of CAR T cells for solid tumors has a number of challenges, such as lack of tumor-specific targets, CAR T cell exhaustion, and the immunosuppressive tumor microenvironment. To address these challenges, AffyImmune has developed technologies to affinity tune and track CAR T cells in patients. The targeting moiety is affinity tuned to preferentially bind to tumor cells overexpressing the target while leaving normal cells with low basal levels untouched, thereby increasing the therapeutic window and allowing for more physiological T cell killing. The CAR T cells are designed to express SSTR2 (somatostatin receptor 2), which allows for the tracking of CAR T cells in vivo via PET/CT scan using FDA-approved DOTATATE.MethodsAIC100 was generated by affinity tuning the I-domain of LFA-1, the physiological ligand to ICAM-1. Various mutants with 106-fold difference in affinity were evaluated for affinity. This allowed structure activity relationships to be conducted using CAR T cells expressing the various affinity mutants against targets with varying antigen densities. The variant with micromolar affinity was clearly the most effective in non-clinical animal models. AIC100 is currently being evaluated to assess safety, CAR T expansion, tumor localization, and preliminary activity in patients with advanced thyroid cancer in a phase I study (NCT04420754). Our study uses a modified toxicity probability interval design with three dosage groups of 10 x 106, 100 x 106, and 500 x 106 cells.ResultsPreclinical studies demonstrated greater in vivo anti-tumor activity and safety with lower affinity CAR T cells. A single dose of AIC100 resulted in tumor elimination and significantly improved survival of animals. AIC100 activity was confirmed in other high ICAM-1 tumor models including breast, gastric, and multiple myeloma. In a Phase I patient given 10-million CAR T cells, near synchronous imaging of FDG and DOTATATE revealed preliminary evidence of transient CAR T expansion and tumor reduction at multiple tumor lesions, with the peak of CAR T density coinciding with the spike in CAR T numbers in blood.ConclusionsWe have developed affinity tuned CAR T cells designed to selectively target ICAM-1 overexpressing tumor cells and to spatiotemporally image CAR T cells. Near-synchronous FDG and DOTATATE scans will enhance patient safety by early detection of off-tumor CAR T activity and validation of tumor response. We anticipate that our ‘tune and track’ technology will be widely applicable to developing potent yet safe CAR T cells against hard-to-treat solid cancers.Trial RegistrationNCT04420754Ethics ApprovalIRB number19-12021154IACUC (animal welfare): All animal experiments were performed in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals. Animal handling protocols were approved by the Institutional Laboratory Animal Use and Care Committee of Weill Cornell Medicine (Permit Number: 2012–0063).


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 451-451 ◽  
Author(s):  
Arnab Ghosh ◽  
Marco L. Davila ◽  
Lauren F. Young ◽  
Christopher Kloss ◽  
Gertrude Gunset ◽  
...  

Abstract Abstract 451 Chimeric antigen receptors (CAR) represent a potent strategy to target T cells against selected tumor antigens. Ongoing clinical trials indicate that autologous T cells expressing CARs targeting CD19, a B cell-associated antigen, can induce complete remission and B cell aplasia in patients with B cell malignancies. Donor CD19-CAR+ T cells could potentially be used to treat recipients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the risk of alloreactivity mediated by endogenous T cell receptors (TCR) triggering an acute GVHD is not known. This is partly due to the absence of in vivo models to study the relative effects of CAR and endogenous TCR signaling. For the first time, we have evaluated the relative effects of CD19-targeted donor T cells on the elimination of CD19+ B cells and endogenous TCR-mediated alloreactivity in mouse models of allo-HSCT. We generated a panel of retroviral vectors encoding mouse CD19-specific CARs: as a control, CD19-delta, a tail-less CAR lacking the CD3ζ signaling domain; CD19z1, which signals through its CD3ζ endodomain; and CD19-28z, which signals through CD28 and CD3ζ (Figure 1A). CD19z1+ and CD19-28z+ T cells mediated specific lysis of CD19-expressing tumors in vitro, while CD19-delta+ T cells did not. In order to assess the anti-tumor capacity of CD19-CAR+ T cells in vivo, we transferred the transduced B6 donor T cells into lethally irradiated BALB/c recipients that were administered T cell-depleted allografts and CD19+ lymphoma A20-TGL (B6–> BALB/c+A20-TGL). CD19-CAR+ T cells (CD19z1 and CD19-28z) mediated clearance of A20 tumor cells visualized by in vivo imaging of luciferase-expressing tumor cells (Figure 1B and data not shown) and significantly improved tumor free survival. CD19-CAR+ B6 T cells could sustain prolonged B cell hypoplasia when adoptively transferred into lethally irradiated haploidentical CBF1 recipients of T cell-depleted allografts (B6–> CBF1, Figure 1C). These data indicate that under alloreactive conditions, donor CD19-CAR+ T cell signaled through the CAR leading to specific elimination of CD19+ tumors and B lineage cells. In order to determine the risk of GVHD, we transferred the donor CD19-CAR+ T cells into haploidentical HSCT recipients. Interestingly, CD19-CAR+ T cells mediated significantly less acute GVHD, resulting in improved survival and lower GVHD scores (Figure 1D). Donor CD19-delta+ T cells however mediated lethal GVHD, indicating that the endogenous TCR mediated strong alloreactivity in the absence of CAR signaling. Similar results were obtained from experiments using MHC-mismatched (B6–> BALB/c) models. It is known that signaling through endogenous TCR is accompanied by down-regulation of surface TCR expression. We found significant decreases in surface CD3ϵ, TCRβ and CD90 expressions in donor CD19-delta+ T cells under alloreactive conditions. In contrast, donor CD1928z+ T cells failed to down-regulate surface TCR expression under similar conditions, suggesting that endogenous TCR function was altered in CAR-activated T cells. In the context of allo-HSCT, preferential CAR signaling at the expense of alloreactive endogenous TCR signaling may thus lead to reduced alloreactivity and attenuation of GVHD. These results provide the first pre-clinical evidence suggesting that CAR-modified, unselected donor T cells may be safely applied in an allogeneic context. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2807-2807
Author(s):  
Masaya Suematsu ◽  
Shigeki Yagyu ◽  
Nobuyoshi Nagao ◽  
Susumu Kubota ◽  
Yuto Shimizu ◽  
...  

Abstract Background: The quality of chimeric antigen receptor (CAR)-T cell products, including the expression of memory and exhaustion markers, has been shown to influence their long-term functionality. We previously demonstrated that piggyBac (PB) transposon-mediated CD19 CAR-T cells exhibit memory-rich phenotype that is characterized by a high proportion of CD45RA+/CCR7+ T cell fraction. To further investigate the favorable phenotype of PB-CD19 CAR-T cells, we generated PB-CD19 CAR-T cells from CD45RA+ and CD45RA− peripheral blood mononuclear cells (PBMCs) (RA+ CAR and RA− CAR, respectively), and compared their phenotype and antitumor function. Methods: CD45RA+ and CD45RA− PBMCs were isolated by magnetic selection from whole PBMCs, then the CD19-CAR transgene was transduced into these cells using the PB transposon system, as described previously. Transduction efficiency of CD19 CAR transgene was determined 24 hours by flow cytometry after transduction. The phenotype of CD19 CAR-T was evaluated by flow cytometry on day 14. High throughput RNA sequencing was performed to see the T cell activation/exhaustion profile upon antigen stimulation. Sequential killing assays were performed by adding fresh tumor cells into CAR-T cells co-cultured with tumor cells every three days by restoring an effector target ratio of 1:1. To see the durable antitumor efficacy in vivo, we performed in vivo stress test, in which CAR T-cells dosage was lowered to the functional limits, so that these CAR-T cells should be maintained and expanded in vivo, to achieve the antitumor efficacy. We injected 5 x 10 5 of firefly luciferase-labeled CD19+ tumor cells (REH) into NSG mice via tail vein, then these mice were treated with 1 x 10 5 of CD19 RA+ CAR-T, RA− CAR-T, or control CAR-T cells, respectively, at day 6 after the tumor injection. Results: RA+ CAR T cells demonstrated better transient transduction efficiency 24 h after transduction (RA+ CAR-T: 77.5 ± 9.8% vs RA− CAR-T: 39.7 ± 3.8%), and superior expansion capacity after 14 days of culture than RA− CAR-T cells (RA+ CAR-T: 32.5 ± 9.3-fold vs RA− CAR-T: 11.1 ± 5.4-fold). RA+ CAR-T cells exhibited dominant CD8 expression (RA+ CAR-T: 84.0 ± 3.4% vs RA− CAR-T: 34.1 ± 10.6%), less expression of exhaustion marker PD-1 (RA+ CAR-T: 3.1 ± 2.5% vs RA− CAR-T: 19.2 ± 6.4%) and T cell senescence marker CD57 (RA+ CAR-T: 6.8 ± 3.6% vs RA− CAR-T: 20.2 ± 6.9%), and enrichment of naïve/stem cell memory fraction (CAR+/CD45RA+CCR7+ fraction; RA+ CAR-T: 71.9 ± 9.7% vs RA− CAR-T: 8.0 ± 5.3%), which were associated with longevity of CAR-T cells. Transcriptome analysis revealed that RA+ CAR-T cells exhibited the enrichment of naïve/memory phenotype and less expression of canonical exhaustion markers, and these exhaustion profiles even maintained after the antigen stimulation. RA+ CAR-T cells demonstrated sustained killing activity even after multiple tumor rechallenges in vitro, without inducing exhaustion marker expression of PD-1. Although antigen stimulation could increase CAR expression, leading to tonic CAR signaling and exhaustion, in our study, the expression of CAR molecule on the cell surface following antigen stimulation in RA+ CAR was controlled at a relatively lower level that in RA− CAR-T cells. RA+ CAR-T cells achieved prolonged tumor control with expansion of CAR-T cells than RA− CAR-T cells in in vivo stress test (Fig.1A-C). On day15, bone marrow studies in RA+ CAR group exhibited abundant human CD3 positive T cells with less expression of PD-1, and relatively smaller amount of REH cells than RA− CAR group (Fig.1D). Furthermore, in two of long-lived mice in RA+ CAR group, human CD3 positive T cells were expanded even day 50 after treatment as confirmed by sequential bone marrow studies (Fig.1E), which indicated the antigen-induced proliferation and long-term functionality of RA+ CAR-T cells in vivo. Conclusion: Our results suggest that PB-mediated RA+ CAR-T cells exhibit memory-rich phenotype and superior antitumor function, thereby indicating the usefulness of CD45RA+ PBMC as a starting material of PB-CAR-T cells. Figure 1 Figure 1. Disclosures Yagyu: AGC Inc.: Research Funding. Nagao: AGC Inc.: Current Employment. Kubota: AGC Inc.: Current Employment. Shimizu: AGC Inc.: Current Employment. Nakazawa: AGC Inc.: Research Funding; Toshiba Corporation: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 963-963 ◽  
Author(s):  
Robbie G. Majzner ◽  
Skyler P. Rietberg ◽  
Louai Labanieh ◽  
Elena Sotillo ◽  
Evan W. Weber ◽  
...  

Abstract Target antigen density has emerged as a major factor influencing the potency of CAR T cells. Our laboratory has demonstrated that the activity of numerous CARs is highly dependent on target antigen density (Walker et al., Mol Ther, 2017), and high complete response rates in a recent trial of CD22 CAR T cells for B-ALL were tempered by frequent relapses due to decreased CD22 antigen density on lymphoblasts (Fry et al., Nat Med, 2018). To assess if antigen density is also a determinant of CD19 CAR T cell therapeutic success, we analyzed CD19 antigen density from fifty pediatric B-ALL patients treated on a clinical trial of CD19-CD28ζ CAR T cells. We found that patients whose CD19 expression was below a threshold density (2000 molecules/lymphoblast) were significantly less likely to achieve a clinical response than those whose leukemia expressed higher levels of CD19. In order to further understand this limitation and how it may be overcome, we developed a model of variable CD19 antigen density B-ALL. After establishing a CD19 knockout of the B-ALL cell line NALM6, we used a lentivirus to reintroduce CD19 and then FACS sorted and single cell cloned to achieve a library of NALM6 clones with varying CD19 surface densities. CD19-CD28ζ CAR T cell activity was highly dependent on CD19 antigen density. We observed decreases in cytotoxicity, proliferation, and cytokine production by CD19 CAR T cells when encountering CD19-low cells, with an approximate threshold of 2,000 molecules of CD19 per lymphoblast, below which, cytokine production in response to tumor cells was nearly ablated. Given that a CD19-4-1BBζ CAR is FDA approved for children with B-ALL and adults with DLBCL, we wondered whether CARs incorporating this alternative costimulatory domain would have similar antigen density thresholds for activation. Surprisingly, CD19-4-1BBζ CAR T cells made even less cytokine, proliferated less, and had further diminished cytolytic capacity against CD19-low cells compared to CD19-CD28ζ CAR T cells. Analysis by western blot of protein lysates from CAR T cells stimulated with varying amounts of antigen demonstrated that CD19-CD28ζ CAR T cells had higher levels of downstream signals such as pERK than CD19-4-1BBζ CAR T cells at lower antigen densities. Accordingly, calcium flux after stimulation was also significantly higher in CD19-CD28ζ than CD19-4-1BBζ CAR T cells. In a xenograft model of CD19-low B-ALL, CD19-4-1BBζ CAR T cells demonstrated no anti-tumor activity, while CD19-CD28ζ CAR T cells eradicated CD19-low leukemia cells. Therefore, the choice of costimulatory domain in CAR T cells plays a major role in modulating activity against low antigen density tumors. CD28 costimulation endows high reactivity towards low antigen density tumors. We confirmed the generalizability of this finding using Her2 CAR T cells; Her2-CD28ζ CAR T cells cleared tumors in an orthotopic xenograft model of Her2-low osteosarcoma, while Her2-4-1BBζ CAR T cells had no effect. This finding has implications for CAR design for lymphoma and solid tumors, where antigen expression is more heterogeneous than B-ALL. To enhance the activity of CD19-4-1BBζ CAR T cells against CD19-low leukemia, we designed a CAR with two copies of intracellular zeta in the signaling domain (CD19-4-1BBζζ). T cells expressing this double-zeta CAR demonstrated enhanced cytotoxicity, proliferation, cytokine production, and pERK signaling in response to CD19-low cells compared to single-zeta CARs. Additionally, in a xenograft model, CD19-4-1BBζζ CAR T cells demonstrated enhanced activity against CD19-low leukemia compared to CD19-4-1BBζ CAR T cells, significantly extending survival. The addition of a third zeta domain (CD19-4-1BBζζζ) further enhanced the activity of CAR T cells. However, inclusion of multiple copies of the costimulatory domains did not improve function. In conclusion, CD19 antigen density is an important determinant of CAR T cell function and therapeutic response. CD19-CD28ζ CARs are more efficient at targeting CD19-low tumor cells than CD19-4-1BBζ CARs. The addition of multiple zeta domains to the CAR enhances its ability to target low antigen density tumors. This serves as proof of concept that rational redesign of CAR signaling endodomains can result in enhanced function against low antigen density tumors, an important step for extending the reach of these powerful therapeutics and overcoming a significant mechanism of tumor escape. Disclosures Lee: Juno: Consultancy.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i39-i39
Author(s):  
Aaron Mochizuki ◽  
Sneha Ramakrishna ◽  
Zina Good ◽  
Shabnum Patel ◽  
Harshini Chinnasamy ◽  
...  

Abstract Introduction We are conducting a Phase I clinical trial utilizing chimeric antigen receptor (CAR) T-cells targeting GD2 (NCT04196413) for H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) and spinal cord diffuse midline glioma (DMG). Cerebrospinal fluid (CSF) is collected for correlative studies at the time of routine intracranial pressure monitoring via Ommaya catheter. Here we present single cell RNA-sequencing results from the first 3 subjects. Methods Single cell RNA-sequencing was performed utilizing 10X Genomics on cells isolated from CSF at various time points before and after CAR T-cell administration and on the CAR T-cell product. Output was aligned with Cell Ranger and analyzed in R. Results As detailed in the Majzner et al. abstract presented at this meeting, three of four subjects treated at dose-level one exhibited clear radiographic and/or clinical benefit. We have to date completed single cell RNA-sequencing for three of these four subjects (two with benefit, one without). After filtering out low-quality signals and doublets, 89,604 cells across 3 subjects were analyzed. Of these, 4,122 cells represent cells isolated from CSF and 85,482 cells represent CAR T-cell product. Two subjects who demonstrated clear clinical and radiographic improvement exhibited fewer S100A8+S100A9+ myeloid suppressor-cells and CD25+FOXP3+ regulatory T-cells in the CSF pre-infusion compared to the subject who did not derive a therapeutic response. In one subject with DIPG who demonstrated improvement, polyclonal CAR T-cells detectable in CSF at Day +14 demonstrated enrichment of CD8A, GZMA, GNLY and PDCD1 compared to the pre-infusion CAR T-cells by trajectory analysis, suggesting differentiation toward a cytotoxic phenotype; the same subject exhibited increasing numbers of S100A8+S100A9+ myeloid cells and CX3CR1+P2RY12+ microglia over time. Further analyses will be presented as data become available. Conclusions The presence of immunosuppressive myeloid populations, detectable in CSF, may correlate to clinical response in CAR T cell therapy for DIPG/DMG.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4631-4631
Author(s):  
Lei Xiao

New Generation Chimeric Antigen Receptor T-Cell Therapy ( CoupledCAR ) Induces High Rate Remissions in Solid Tumor Yu Liu1,Song Li2,Youli Luo3,Haixia Song4,Chengfei Pu5, Zhiyuan Cao 5, Cheng Lu5,Yang Hang5,Xi Huang5,Xiaogang Shen5 ,Xiaojun Hu3 , Renbin Liu1,Xiuwen Wang2,Junjie Mao3,Shihong Wei4 ,Zhao Wu5and Lei Xiao5* 1.The Third Affiliated Hospital, SUN YAT-SEN University 2.Qilu Hospital of Shandong University 3.The Fifth Affiliated Hospital, SUN YAT-SEN University 4.Gansu Procincial Cancer Hospital 5.Innovative Cellular Therapeutics *Corresponding to: Lei Xiao, [email protected] Chimeric antigen receptor (CAR) T cell therapy made significant progress for treating blood cancer such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges, such as physical barrier, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and cell expansion in vivo for treatment of solid tumors Conventional CAR T cell therapy showed weak CAR T expansion in patients and thus achieved no or little response for treating solid tumors. Here, we generated "CoupledCAR" T cells including an anti-TSHR CAR molecule. Compared with conventional CART cells,these "CoupledCAR" T cells successfully improved the expansion of CART cells more than 100 times and enhanced CAR T cells' migration ability, allowing the CAR T cells to resist and infiltrate the tumor microenvironment and killed tumor cells. To verify the effect of "CoupledCAR" T cells on solid tumors, we have completed several clinical trials for different solid tumors, including two patients with thyroid cancer. Immunohistochemistry (IHC) results showed that thyroid stimulating hormone receptors (TSHR) were highly expressed in thyroid cancer cells. In vitro co-culture experiments showed that TSHR CAR T cells specifically recognized and killed TSHR-positive tumor cells. Animal experiments showed that TSHR CAR T cells inhibited the proliferation of TSHR-positive tumor cells. Therefore, we designed "CoupledCAR" T cells expressing a binding domain against TSHR. Further,we did clinical trials of two group patients that were successfully treated using conventional TSHR CAR T cells and the "CoupledCAR" T cells, respectively. In the first group using conventional TSHR CAR T cells, patients showed weak cell expansion and less migration ability. In the group using TSHR "CoupledCAR" T cells, patients showed rapid expansion of CAR T cells and killing of tumor cells. One month after infusion (M1), the patient was evaluated as PR(Partial Response): the lymph node metastasis disappeared, and thoracic paratracheal tumors decreased significantly. Three months after infusion (M3), the patient was evaluated as a durable response, and the tumor tissue was substantially smaller than M1. Further, two patients with colonrectal cancer were enrolled in this trial and infused "CoupledCAR" T cells. One patient achieved PR and the other one achieved SD (Stable Disease). Therefore, "CoupledCAR" T cells can effectively promote expansion, migration and killing ability of CAR T cells in patients with thyroid cancer. "CoupledCAR" T cell technology is a technological platform, which may be used to treat other cancer types. Next, we are recruiting more patients with solid tumors in clinical trials using "CoupledCAR" T cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1859-1859 ◽  
Author(s):  
Yongxian Hu ◽  
Zhang Yanlei ◽  
Guoqing Wei ◽  
Chang alex Hong ◽  
He Huang

Background BCMA CAR-T cells have demonstrated substantial clinical activity against relapsed/refractory multiple myeloma (RRMM). In different clinical trials, the overall response rate (ORR) varied from 50% to 100%. Complete remission (CR) rate varied from 20% to 80%. Here we developed a BCMA CAR-T cell product manufactured via lentiviral vector-mediated transduction of activated T cells to express a second-generation CAR with 4-1BB costimulatory domain and evaluated the efficacy and safety, moreover, dynamics of immune cell subsets using single-cell mass cytometry during treatment were analyzed. Methods Our trial (ChiCTR1800017404) is a phase 1, single-arm, open-label single center study to evaluate the safety and efficacy of autologous BCMA CAR-T treatment for RRMM. Patients were subjected to a lymphodepleting regimen with Flu and Cy prior to CAR-T infusion. BCMA CAR-T cells were administered as a single infusion at a median dose of 3.5 (1 to 6) ×106/kg. MM response assessment was conducted according to the International Uniform Response Criteria. Cytokine-release syndrome (CRS) was graded as Lee DW et al described (Blood.2014;124(2):188-195). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs), frozen BCMA CAR-T aliquots, phenotype and in vivo kinetics of immune cell subsets after CAR-T infusion were performed by single-cell mass cytometry. Results As of the data cut-off date (August 1st, 2019), 33 patients, median age 62.5 (49 to 75) years old were infused with BCMA CAR-T cells. The median observation period is 8.0 (0.7 to 18) months. ORR was 100% (The patient who died of infection at 20 days after CAR-T infusion were excluded). All the 32 patients achieved MRD negative in bone marrow by flow cytometry in 2 weeks after CAR-T infusion. Partial response (4 PR, 12.1%), VGPR (7 VGPR, 21.2%), and complete response (21 CR, 63.6%) within 12 weeks post CAR-T infusion were achieved. Durable responses from 4 weeks towards the data cut-off date were found in 28/33 patients (84.8%) (Figure 1a). All patients had detectable CAR-T expansion by flow cytometry from Day 3 post CAR-T cell infusion. The peak CAR-T cell expansion in CD3+ lymphocytes of peripheral blood (PB) varied from 35% to 95% with a median percentage of 82.9%. CRS was reported in all the 33 patients, including 4 with Grade 1, 13 with Grade 2 and 16 with Grade 3. During follow-up, 1-year progression-free survival (PFS) was 70.7% (Figure 1b) and overall survival (OS) was 71.7% (Figure 1c). Multivariate analysis of patients with PR and patients with CR+VGPR revealed that factors including extramedullary infiltration, age>60 years old, high-risk cytogenetics, late stage and CAR-T cell dose were not associated with clinical response (P>0.05). Single-cell mass cytometry revealed that the frequency of total T cells, CD8+ T cells, NK cells and CD3+CD56+ NKT cells in PB was not associated with BCM CAR-T expansion or clinical response. CD8+ Granzyme B+ Ki-67+ CAR-T cells expanded prominently in CRS period. As serum cytokines increased during CRS, non-CAR-T immune cell subsets including PD1+ NK cells, CD8+ Ki-67+ ICOS+ T cells expanded dominantly implying that non-CAR-T cells were also activated after CAR-T treatment. After CRS, stem cell like memory CAR-T cells (CD45RO+ CCR7- CD28- CD95+) remain the main subtype of CAR-T cells (Figure 1d). Conclusions Our data showed BCMA CAR-T treatment is safe with prominent efficacy which can overcome the traditional high-risk factors. We also observed high expansion level and long-term persistence of BCMA CAR-T cells contribute to potent anti-myeloma activity. Stem cell like memory CAR-T cells might be associated with long-term persistence of BCMA CAR-T cells. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document