scholarly journals Simultaneous Detection of Dopamine and Serotonin with carbon-based electrodes

2021 ◽  
Author(s):  
Gaurang Khot ◽  
Neil James Shirtcliffe ◽  
Tansu Celikel

Graphite-based materials, like pyrolyzed carbon electrodes, are widely used as implantable electrochemical sensors, for the detection of neurotransmitters, neuromodulators, and gaseous species, thanks to their strong mechanical properties, superior electron-transfer kinetics, and in-vivo stability. Electrochemical properties of graphite can be improved by coating them with carbon nanotubes (CNTs) which improves sensitivity, selectivity, and resistance to biofouling. Although several types of electrodes have been developed to detect biologically relevant targets like monoamines, multiplexed sensing of dopamine and serotonin is not yet widely available. Herein we introduce pyrolyzed carbon electrodes coated with CNTs for fast scan cyclic voltammetry for simultaneous detection of dopamine and serotonin with a sensitivity of 52/microM and 5nA/microM, respectively. Serotonin shows a broad oxidation peak at 0.68V. When dopamine and serotonin are probed simultaneously at 10 Hz, dopamine oxidizes at 0.1V 0.1 and serotonin oxidizes at 0.78V and dopamine reduces at -0.35V and serotonin at 0.1V. Thus the sensors shows discrimination between dopamine and serotonin and are suitable for simultaneous detection of these monoamines. Keywords: Carbon nanotubes, Electrochemistry, Dopamine, Serotonin, Anti-fouling Surfaces

2021 ◽  
Author(s):  
Gaurang Khot ◽  
Mohsin Kaboli ◽  
Tansu Celikel ◽  
Neil Shirtcliffe

Adrenaline and hydrogen peroxide have neuromodulatory functions in the brain.Considerable interest exists in developing electrochemical sensors that can detect their levels in vivo due to their important biochemical roles. Challenges associated with electrochemical detection of hydrogen peroxide and adrenaline are that the oxidation of these molecules usually requires highly oxidising potentials (beyond 1.4V vs Ag/AgCl) where electrode damage and biofouling are likely and the signals of adrenaline, hydrogen peroxide and adenosine overlap. To address these issues we fabricated pyrolysed carbon electrodes coated with oxidised carbon nanotubes (CNTs). Using these electrodes for fast-scan cyclic voltammetric (FSCV) measurements showed that the electrode offers reduced overpotentials compared with graphite and improved resistance to biofouling. The Adrenaline peak is reached at 0.75 V and reduced back at -0.2 V while hydrogen peroxide is detected at 0.85V on this electrode. The electrodes are highly sensitive with a sensitivity of16nA microM-1 for Adrenaline and 11nA microM-1 for hydrogen peroxide on an 80 micro m2 electrode. They are also suitable to distinguish between adrenaline, hydrogen peroxide and adenosine thus these probes can be used for multimodal detection of analytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Wang ◽  
Yuhe Zhu ◽  
Susan Liao ◽  
Jiajia Li

This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experimentsin vitro, and biocompatibility testsin vivo.


Chemosensors ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Bo Si ◽  
Edward Song

Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.


The Analyst ◽  
2021 ◽  
Author(s):  
Elisa Castagnola ◽  
Sanitta Thongpang ◽  
Mieko Hirabayashi ◽  
Giorgio Nava ◽  
Surabhi Nimbalkar ◽  
...  

Progress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid...


2022 ◽  
pp. 1-7
Author(s):  
Gaurang Khot ◽  
Mohsen Kaboli ◽  
Tansu Celikel ◽  
Neil Shirtcliffe

Adrenaline and hydrogen peroxide have neuromodulatory functions in the brain and peroxide is also formed during reaction of adrenaline. Considerable interest exists in developing electrochemical sensors that can detect their levels in vivo due to their important biochemical roles. Challenges associated with electrochemical detection of hydrogen peroxide and adrenaline are that the oxidation of these molecules usually requires highly oxidising potentials (beyond 1.4 V vs Ag/AgCl) where electrode damage and biofouling are likely and the signals of adrenaline, hydrogen peroxide and adenosine overlap on most electrode materials. To address these issues we fabricated pyrolysed carbon electrodes coated with oxidised carbon nanotubes (CNTs). Using these electrodes for fast-scan cyclic voltammetric (FSCV) measurements showed that the electrode offers reduced overpotentials compared with graphite and improved resistance to biofouling. Adrenaline oxidises on this electrode at 0.75(±0.1) V and reduces back at −0.2(±0.1) V while hydrogen peroxide oxidation is detected at 0.85(±0.1) V on this electrode. The electrodes are highly sensitive with a sensitivity of 16 nA µM−1 for Adrenaline and 11 nA µM−1 for hydrogen peroxide on an 80 µm2 electrode. They are also suitable to distinguish between adrenaline, hydrogen peroxide and adenosine thus these probes can be used for multimodal detection of analytes.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2015 ◽  
Vol 57 (5) ◽  
pp. 447-457 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

2021 ◽  

The book covers the sensing and monitoring of poisonous carbon monoxide pollution in the environment. The sensors covered include semiconducting metal oxides, carbon nanotubes, conducting polymeric thin films, sensors based on colorimetric detection, non-dispersive infrared sensors, electrochemical sensors and photoacoustic detectors.


Sign in / Sign up

Export Citation Format

Share Document