scholarly journals Nanoscale organization of the endogenous ASC speck

2021 ◽  
Author(s):  
Ivo M. Glueck ◽  
Grusha Primal Mathias ◽  
Sebastian Strauss ◽  
Thomas S. Ebert ◽  
Che Stafford ◽  
...  

The NLRP3 inflammasome is a central component of the innate immune system. Its activation leads to the formation of a supramolecular assembly of the inflammasome adaptor ASC, denoted as 'ASC speck'. Different models of the overall structure of the ASC speck, as well as the entire NLRP3 inflammasome, have been reported in the literature. While many experiments involve overexpression or in vitro reconstitution of recombinant ASC, the cytoplasmic endogenous ASC speck remains difficult to study due to its relatively small size and structural variability. Here, we use a combination of fluorescence imaging techniques including dual-color 3D super-resolution imaging (dSTORM and DNA-PAINT) to visualize the endogenous ASC speck following NLRP3 inflammasome activation. We observe that the complex varies in diameter between ~800 and 1000 nm and is composed of a dense core from which filaments reach out into the periphery. We used a combination of anti-ASC antibodies as well as a much smaller nanobody for labeling and show that the larger complexes do not reliably label the dense core whereas the nanobody, which has a lower binding affinity, is less efficient in labeling the lower-density periphery. Imaging whole cells using dSTORM, furthermore, allowed us to sort the imaged structures into a quasi-temporal sequence suggesting that the endogenous ASC speck becomes mainly denser but not much larger during its formation.

Author(s):  
Zhiyong Zhou ◽  
Menghan He ◽  
Qingqing Zhao ◽  
Dongfan Wang ◽  
Changcheng Zhang ◽  
...  

Introduction:: Microglia-mediated inflammatory responses play a crucial role in aging-related neurodegenerative diseases. The TXNIP/NLRP3 pathway is a key pathway leading to microglial activation. Panax notoginseng saponins (PNS) have been widely used for the treatment of stroke in China. Objective:: This study evaluates the anti-neuroinflammatory effect of PNS and investigates the mechanism via TXNIPmediated NLRP3 inflammasome activation in aging rats. Materials and Methods:: Eighteen-month-old Sprague-Dawley rats were randomly divided into the aging control group and PNS treated groups (n=15 each group). For PNS-treated groups, rats were administrated food with PNS at the doses of 10 mg/kg and 30 mg/kg for consecutive 6 months until they were 24-month old. Rats from the aging control group were given the same food without PNS. Two-month-old rats were purchased and given the same food until 6-month old as the adult control group (n = 15). Then, the cortex and hippocampus were rapidly harvested and deposited. H&E staining was used to assess histo-morphological changes. Western blotting was carried out to detect the protein expression. Immunofluorescence was employed to measure the co-localization of NLRP3, TXNIP and Iba-1. In vitro model was established by LPS+ATP coincubation in the BV2 microglia cell line. Results:: Aging rats exhibited increased activation of microglia, accompanied by a high level of IL-1β expression. Meanwhile, aging rats showed enhanced protein expression of TXNIP and NLRP3 related molecules, which co-localized with microglia. PNS treatment effectively reduced the number of degenerated neurons and reversed the activation of the TXNIP/NLRP3 inflammatory pathway. In vitro results showed that PNS up to 100 μg / ml had no significant toxicity on BV2 microglia. Discussion:: PNS (25, 50 μg/ml) effectively reduced the inflammatory response induced by LPS and ATP co-stimulation, thus inhibiting the expression of TXNIP/NLRP3 pathway-related proteins. Conclusion:: PNS treatment improved aging-related neuronal damage through inhibiting TXNIP mediated NLRP3 inflammasome activation, which provided a potential target for the treatment of inflammatory-related neurodegenerative diseases.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianjun Jiang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
Gengyun Sun ◽  
...  

Abstract Background This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. Methods Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. Results Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. Conclusion This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.


2021 ◽  
Author(s):  
Sahabuddin Ahmed ◽  
Samir Ranjan Panda ◽  
Mohit Kwatra ◽  
Bidya Dhar Sahu ◽  
VGM Naidu

Abstract Several activators of NLRP3 inflammasome have been described; however, the central mechanisms of NLRP3 inflammasome activation in brain microglia, especially at the activating step through free radical generation, still require further clarification. Hence the present study aimed to investigate the role of free radicals in activating NLRP3 inflammasome driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in vitro and in vivo models of Parkinson’s disease. Initial priming of microglial cells with lipopolysaccharide (LPS) following treatment with hydrogen peroxide (H2O2) induces NF-κB translocation to nucleus with robust generation of free radicals that act as Signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses nuclear translocation of NF-κB and maintains cellular redox homeostasis in microglia that limits NLRP3 inflammasome activation along with processing active caspase-1, IL-1β and IL-18. To further correlates the in vitro study with in vivo MPTP model, treatment with PA also inhibits the nuclear translocation of NF-κB and downregulates the NLRP3 inflammasome activation. PA administration upregulates various antioxidant enzymes levels and restored the level of dopamine and other neurotransmitters in the striatum of the mice brain with improved behavioural activities. Additionally, treatment with Mito-TEMPO (a mitochondrial ROS inhibitor) was also seen to inhibit NLRP3 inflammasome and rescue dopaminergic neuron loss in the mice brain. Therefore, we conclude that NLRP3 inflammasome activation requires a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting NLRP3 inflammasome pathway in Parkinson’s disease.


2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2021 ◽  
Author(s):  
Xianjie Zhu ◽  
Shiyou Dai ◽  
Baohua Xia ◽  
Jianbao Gong ◽  
Bingzheng Ma

Abstract Background:Osteoarthritis (OA) is a chronic degenerative joint bone disease characterized by cartilage degradation. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is associated with the inflammatory and metabolic responses to OA. However, the underlying mechanisms of the pathological process of OA are not clear. The aim of the present study was to examine the protective effects of vaspin both in vitro and in vivo.Methods:Monosodium iodoacetate (MIA)-induced Wistar rat model of OA was used to assess the in vivo effects of vaspin administered for 12 weeks. The characteristics of OA were evaluated by haematoxylin and eosin (H&E) and safranin O/fast green staining. The anti-inflammatory effect of vaspin was assessed using immunohistochemical, qRT-PCR, and western blotting analysis. Parallel experiments to detect the molecular mechanism through which vaspin prevents OA were performed using LPS-treated chondrocytes.Results:Our results showed that the degeneration of cartilage and upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-13 were ameliorated by vaspin. Additionally, vaspin suppressed the activation of TXNIP/NLRP3 and secretion of tumor necrosis factor ɑ and interleukin-1β in vivo. It was further confirmed that vaspin could also suppress LPS-induced NLRP3 inflammasome activation and reduce collagen formation in chondrocytes. Moreover, vaspin inhibited NLRP3 inflammasome activation by suppressing the ROS/TXNIP pathway.Conclusions: Vaspin inhibited OA by repressing TXNIP/NLRP3 activation in in vitro and in vivo models of OA, thus providing a novel therapeutic strategy for OA.


2019 ◽  
Author(s):  
Z Z ◽  
He WQ ◽  
Cao XL ◽  
Tang B ◽  
Fan QY ◽  
...  

Abstract Background: Stroke-related damage in rats is protected against by estrogen which also has an anti-cerebral ischemia role mostly conducted via its association with estrogen receptor (ER) α .However,processes governing ER α-mediated neuroprotection are poorly comprehended. This study sought to establish whether ERα’s control of neuroinflammation caused by NLRP3 inflammasome activation emanating from SIRT1-AMPK signaling allowed ERα’s improvement of hypoxia/ischemic damage. Methods: The intraperitoneal administration of estrogen was performed to ovariectomized (bilaterally) (OVA) SD rats prior to middle cerebral artery occlusion (MCAO). The strong rise in NLRP3 inflammasome activation including caspase-1, ASC, IL-1β and IL-18 occurred following OVA and were specifically decreased following estrogen treatment. Moreover, the expression of Silent Information Regulator 1 (SIRT1) and ERα were reversed. The association between ERα-led inhibition of the NLRP3 inflammasome in conditions of hydrogen peroxide (H 2 O 2 ) and SIRT1-AMPK signaling were also examined. Results: Findings confirmed the prevention of NLRP3 inflammasome activation instigated by H 2 O 2 and the in vitro production of IL-1β, IL-18 together with the enhancement of this impact by SIRT1. Additionally, ERα's neuroprotective impact was prevented by inhibiting of AMPK. The synergistic impact of SIRT1 on ERα increased AMPK activation; however, SIRT1 knockout eliminated this. Conclusions: The findings indicate that inhibition of the NLRP3 inflammasome by ERα results in neuroprotection against hypoxia/ischemic injury and that ERα’s neuroprotection can be highly improved by the SIRT1-dependent AMPK pathway.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zufeng Ding ◽  
Sadip Pant ◽  
Abhishek Deshmukh ◽  
Jawahar L Mehta

Objective: This study tested the hypothesis that mitochondrial DNA damage could trigger NLRP3 inflammasome activation during inflammation, and LOX-1 may play a critical role in this process. Methods and Results: We performed studies in cultured human THP1 macrophages exposed to ox-LDL or LPS,which are often used as inflammation stimuli in vitro . We examined and confirmed the increase in LOX-1 expression when cells were treated with ox-LDL or LPS. Parallel groups of cells were treated with LOX-1 Ab to bind LOX-1. In accordance with our previous studies in endothelial cells and smooth muscle cells, LOX-1 Ab markedly reduced ox-LDL- as well as LPS-stimulated LOX-1 expression. To assess mitochondrial ROS generation, MitoSOX™ Red mitochondrial superoxide indicator was used. Both fluorescence staining and flow cytometry analysis showed that LPS induced (more than ox-LDL) mitochondrial ROS generation. Pretreatment with LOX-1 Ab significantly attenuated mitochondrial ROS generation in response to ox-LDL or LPS. Then we observed mtDNA damage in THP1 cells exposed to ox-LDL or LPS. Importantly, pretreatment with LOX-1 Ab protected mtDNA from damage in response to both stimuli. This was also confirmed by q-PCR (mtDNA/nDNA ratio) analysis. Further, ox-LDL or LPS induced the expression of phos-NF-kB p65, caspase-1 p10 and p20, and cleaved proteins IL-1β and IL-18. Of note, NLRP3 inflammasome was activated in response to ox-LDL or LPS in a similar manner. Pretreatment of cells with LOX-1 Ab treatment blocked or significantly attenuated these inflammatory responses. Conclusions: These observations based on in vitro observations indicate that LOX-1 via ROS generation plays a key role in mtDNA damage which then leads to NLRP3 inflammasome activation during inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Leng ◽  
Yingjie Zhang ◽  
Xinran Liu ◽  
Zhen Zhang ◽  
Yang Liu ◽  
...  

Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.


Sign in / Sign up

Export Citation Format

Share Document