scholarly journals AMPK regulates germline stem cell integrity and quiescence through a mir-1/tbc-7/rab-7 pathway in C. elegans.

2021 ◽  
Author(s):  
Christopher Wong ◽  
Pratik Kadekar ◽  
Elena Jurczak ◽  
Richard Roy

During periods of energetic stress, Caenorhabditis elegans can undergo a global quiescent stage known as "dauer". During this stage, all germline stem cells undergo G2 cell cycle arrest through an AMPK-dependent mechanism. In animals that lack AMPK signalling, the germ cells fail to arrest, undergo uncontrolled proliferation and lose their reproductive capacity. These germline defects are accompanied by an altered chromatin landscape and gene expression program. We identified an allele of tbc-7, a RabGAP protein that functions in the neurons, which when compromised, suppresses the germline hyperplasia in the dauer larvae, as well as the post-dauer sterility and somatic defects characteristic of AMPK mutants. This mutation also corrects the abundance and aberrant distribution of transcriptionally activating and repressive chromatin marks in animals that otherwise lack all AMPK signalling. We identified RAB-7 as one of the potential RAB proteins that is regulated by tbc-7 and show that the activity of RAB-7 is critical for the maintenance of germ cell integrity during the dauer stage. A singular small RNA, mir-1, was identified as a direct negative regulator of tbc-7 expression through the analysis of seed sequences on the 3′UTR of tbc-7. Animals lacking mir-1 are post-dauer sterile, displaying a similar phenotype to AMPK mutants. Altogether, our findings describe a novel mir-1/tbc-7/rab-7 pathway occurring in the neurons that regulates the germ line in a cell non-autonomous manner.

2021 ◽  
Vol 7 (26) ◽  
pp. eabg3012
Author(s):  
Giuseppe Calculli ◽  
Hyun Ju Lee ◽  
Koning Shen ◽  
Uyen Pham ◽  
Marija Herholz ◽  
...  

Protein aggregation causes intracellular changes in neurons, which elicit signals to modulate proteostasis in the periphery. Beyond the nervous system, a fundamental question is whether other organs also communicate their proteostasis status to distal tissues. Here, we examine whether proteostasis of the germ line influences somatic tissues. To this end, we induce aggregation of germline-specific PGL-1 protein in germline stem cells of Caenorhabditis elegans. Besides altering the intracellular mitochondrial network of germline cells, PGL-1 aggregation also reduces the mitochondrial content of somatic tissues through long-range Wnt signaling pathway. This process induces the unfolded protein response of the mitochondria in the soma, promoting somatic mitochondrial fragmentation and aggregation of proteins linked with neurodegenerative diseases such as Huntington’s and amyotrophic lateral sclerosis. Thus, the proteostasis status of germline stem cells coordinates mitochondrial networks and protein aggregation through the organism.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
E Jane Hubbard

Abstract Failure to maintain stem cells with age is associated with conditions such as tissue degeneration and increased susceptibility to tissue damage. We use the C. elegans germline stem cell system as a model to study stem cell aging. This system combines a well-established model for aging with an accessible stem cell system, providing a unique opportunity to understand how aging influences stem cell dynamics. The germline stem/progenitor pool in in C. elegans becomes depleted over time. At the cellular level, aging influences both the size of the stem cell pool and the proliferation rate of stem cells. The flux of differentiated cells also affects how aging impacts the pool. This depletion is partially alleviated in mutants with reduced insulin/IGF-like signaling via inhibition of the transcription factor DAF-16/FOXO. In this role, DAF-16 does not act in the germ line, and its anatomical requirements are different from its previously described roles in larval germline proliferation, dauer control, and lifespan regulation. We found that DAF-16/FOXO is required in certain somatic cells in the proximal part of the reproductive system to regulate the stem cell pool. We also find that the degree to which various age-defying perturbations affect lifespan does not correlate with their effect on germline stem cell maintenance. We are investigating additional aspects of aging germline stem cells using this system.


2018 ◽  
Author(s):  
Pratik Kadekar ◽  
Richard Roy

AbstractC. elegans larvae can undergo a global developmental arrest following the execution of a diapause-like state called ‘dauer’ in response to unfavourable growth conditions. Survival in this stage surpasses the normal lifespan of reproductive animals quite dramatically, and without any apparent negative impact on their reproductive fitness. During this period, the germ cells become quiescent and must retain their reproductive integrity so the animal can reproduce following recovery. This germline stem cell (GSC) arrest requires the activity of AMP-activated protein kinase (AMPK) and in its absence the germ line undergoes hyperplasia. We show here that AMPK mutant animals exhibit complete sterility after recovery from dauer, suggesting that germ cell integrity is compromised during this stage in the absence of AMPK. These defects correlate with altered abundance and distribution of a number of chromatin modifications that affect gene expression. These aberrant chromatin modifications, along with the supernumerary germ cell divisions and the observed post-dauer sterility, were all corrected by disabling key effectors of the small interfering RNA pathway (dcr-1 and rde-4) and the primary Argonaute protein ergo-1, suggesting that AMPK regulates the function of these small RNA pathway components, and in its absence, the pathways become abnormally active. The aberrant regulation of the small RNA pathway components releases the germ cells from quiescence to proliferative state thereby compromising germ cell integrity. Curiously, AMPK expression in either the neurons or the excretory system is sufficient to restore the GSC quiescence and the fertility in the AMPK mutant post-dauer adults, while the fertility of these animals is also partially restored by disabling the dsRNA importer SID-1. Our data suggest that AMPK regulates a small RNA pathway in the soma to establish and/or maintain GSC quiescence and integrity cell non-autonomously in response to the energy stress associated with the dauer stage. Our findings therefore provide a unique model to better understand how the soma communicates with the germ line to establish the appropriate epigenetic modifications required to adapt to acute environmental challenges.


2006 ◽  
Vol 17 (7) ◽  
pp. 3051-3061 ◽  
Author(s):  
Sarah L. Crittenden ◽  
Kimberly A. Leonhard ◽  
Dana T. Byrd ◽  
Judith Kimble

The Caenorhabditis elegans germ line provides a model for understanding how signaling from a stem cell niche promotes continued mitotic divisions at the expense of differentiation. Here we report cellular analyses designed to identify germline stem cells within the germline mitotic region of adult hermaphrodites. Our results support several conclusions. First, all germ cells within the mitotic region are actively cycling, as visualized by bromodeoxyuridine (BrdU) labeling. No quiescent cells were found. Second, germ cells in the mitotic region lose BrdU label uniformly, either by movement of labeled cells into the meiotic region or by dilution, probably due to replication. No label-retaining cells were found in the mitotic region. Third, the distal tip cell niche extends processes that nearly encircle adjacent germ cells, a phenomenon that is likely to anchor the distal-most germ cells within the niche. Fourth, germline mitoses are not oriented reproducibly, even within the immediate confines of the niche. We propose that germ cells in the distal-most rows of the mitotic region serve as stem cells and more proximal germ cells embark on the path to differentiation. We also propose that C. elegans adult germline stem cells are maintained by proximity to the niche rather than by programmed asymmetric divisions.


2018 ◽  
Author(s):  
Sarah L. Crittenden ◽  
ChangHwan Lee ◽  
Ipsita Mohanty ◽  
Sindhu Battula ◽  
Judith Kimble

ABSTRACTStem cell maintenance by niche signaling is a common theme across phylogeny. In the Caenorhabditis elegans gonad, the broad outlines of germline stem cell (GSC) regulation are the same for both sexes: GLP-1/Notch signaling from the mesenchymal Distal Tip Cell (DTC) niche maintains GSCs in the distal gonad of both sexes (Austin and Kimble 1987), and does so via two key stem cell regulators, SYGL-1 and LST-1 (Kershneret al. 2014). Most analyses of niche signaling and GSC regulation have focused on XX hermaphrodites, an essentially female sex making sperm in larvae and oocytes in adults. Here we focus on XO males, which are sexually dimorphic in all tissues, including the distal gonad. The architecture of the male niche and the cellular behavior of GSCs are sex-specific. Despite these differences, males maintain a GSC pool similar to the hermaphrodite with respect to size and cell number and the male GSC response to niche signaling is also remarkably similar.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2463-2476 ◽  
Author(s):  
H. Lin ◽  
A.C. Spradling

Germline stem cells play a pivotal role in gametogenesis; yet little is known about how they are formed, how they divide to self-renew, and how these processes are genetically controlled. Here we describe the self-renewing asymmetric division of germline stem cells in the Drosophila ovarian germline, as marked by the spectrosome, a cytoplasmic structure rich in membrane skeletal proteins. The ontogeny of the spectrosome marks the lineage of germline stem cells. We identified two new groups of mutations in which the divisional asymmetry is disrupted. The first, which we refer to as ovarette (ovt) mutations, was shown to correspond to a novel class of mutations in the pumilio locus. Since pumilio is known to posttranscriptionally repress the expression of target genes at earlier stages of germ cell development, our results suggest that a similar activity is needed to maintain germ line stem cells. We have also identified a second and novel gene, piwi, whose mutations abolish germline stem cell division.


Sign in / Sign up

Export Citation Format

Share Document