Deficiency of ZC3HC1 increases vascular smooth muscle cell migration, proliferation and neointima formation following injury

2021 ◽  
Author(s):  
Redouane Aherrahrou ◽  
Tobias Reinberger ◽  
Julia Werner ◽  
Miriam Otto ◽  
Jaafar Al-Hasani ◽  
...  

AbstractThe ZC3HC1 gene is associated with various cardiovascular traits in that its common missense variant, rs11556924-T (p.Arg363His), lowers risk of coronary artery disease (CAD) and blood pressure, but increases carotid intima-media thickness (IMT). This study was designed to determine the mechanisms by which ZC3HC1 modulates IMT using in vitro and in vivo models.We assessed the effect of the rs11556924-T allele on ZC3HC1 expression in vascular smooth muscle cells (SMCs) from 151 multi-ethnic heart transplant donors and found that rs11556924-T was significantly associated with lower ZC3HC1 expression and faster SMC migration. These results were supported by in vitro silencing experiments. At the protein level, ZC3HC1 deficiency resulted in the accumulation of cyclin B1, a key cell cycle protein. Further, transcriptome analysis revealed changes in the regulation of canonical SMC marker genes, including ACTA2, CNN1, LMOD1, and TAGLN. Pathway analysis of differentially expressed genes in SMCs secondary to ZC3HC1 knockdown showed decreased expression of genes in the cell division and cytoskeleton organization pathways.In line, primary SMCs isolated from the aortas of Zc3hc1-/- mice migrated faster and proliferated more compared to SMCs isolated from wild-type littermates, with the former also showing accumulation of cyclin B1. Neointima formation was also enhanced in Zc3hc1-/- mice in response to arterial injury mimicking restenosis.Taken together, these findings demonstrate that genetic modulation or deficiency of ZC3HC1 leads to the accumulation of cyclin B1 in SMCs and increased migration, proliferation, and injury-induced neointima formation. We further discuss and propose that a genetic variant regulating SMC proliferation may enhance IMT and early atherosclerosis progression but may be beneficial for plaque stability in advanced lesions.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Emily Nguyen ◽  
Olha Koval ◽  
Isabella Grumbach

Background: Restenosis after angioplasty for coronary vascular disease remains a critical problem in cardiovascular medicine. Vascular smooth muscle cell (VSMC) migration and proliferation cause restenosis through neointima formation. Mitochondrial motility is likely necessary for cell proliferation and migration, and is inhibited in microdomains with increased Ca 2+ . The Ca 2+ /calmodulin-dependent kinase II (CaMKII) in mitochondria (mtCaMKII) is proposed to control mitochondrial matrix Ca 2+ uptake through mitochondrial Ca 2+ uniporter (MCU). Thus, we hypothesized that blocking mtCaMKII decreases VSMC migration and neointima formation by decreasing mitochondrial motility. Methods: mtCaMKII was inhibited by expression of the mitochondria-targeted CaMKII inhibitor peptide (CaMKIIN) in a novel transgenic mouse model in smooth muscle only (SM-mtCaMKIIN) or delivered by adenoviral transduction (Ad-mtCaMKIIN). Results: In our models, mtCaMKIIN was detected selectively in mitochondria of VSMC. mtCaMKIIN significantly reduced mitochondrial Ca 2+ current and Ca 2+ content compared to WT in vivo and in vitro. SM-mtCaMKIIN mice showed significantly reduced neointimal area 28 days after endothelial injury (n=8, p<0.05) and fewer proliferating neointimal cells by PCNA staining. In vitro, Ad-mtCaMKIIN mildly reduced VSMC proliferation and mitochondrial ROS production without altering maximal respiration after PDGF treatment. Ad-mtCaMKIIN abolished VSMC migration, as did mitoTEMPO and MCU inhibitor Ru360. Ad-mtCaMKIIN blocked mitochondrial mobility towards the leading edge, while relocation of mitochondria was seen in WT cells 6 h after PDGF treatment. Mitochondrial redistribution was also inhibited by Ru360, but not by mitoTEMPO or cytoplasmic CaMKII inhibition. Mitochondrial fission promotes cell migration. Accordingly, PDGF increased mitochondrial particles in WT VSMC, while mitochondria in Ad-mtCaMKIIN cells were fragmented and unresponsive to PDGF treatment. Conclusions: mtCaMKIIN prevents mitochondrial distribution to the leading edge and reduces VSMC migration and neointima formation. These data suggest mitochondrial Ca 2+ regulation plays an important role in VSMC migration by altering mitochondrial location.


Author(s):  
Chenfeng Mao ◽  
Zihan Ma ◽  
Yiting Jia ◽  
Weihao Li ◽  
Nan Xie ◽  
...  

Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro , and compared with wild-type (WT) mice, nidogen-2 -/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2 -/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo . Nidogen-2 is required for Jagged1-Notch3 signaling.


2006 ◽  
Vol 203 (13) ◽  
pp. 2801-2807 ◽  
Author(s):  
Daniel Sedding ◽  
Jan-Marcus Daniel ◽  
Lars Muhl ◽  
Karin Hersemeyer ◽  
Hannes Brunsch ◽  
...  

The G534E polymorphism (Marburg I [MI]) of factor VII–activating protease (FSAP) is associated with carotid stenosis and cardiovascular disease. We have previously demonstrated that FSAP is present in atherosclerotic plaques and it is a potent inhibitor of vascular smooth muscle proliferation and migration in vitro. The effect of wild-type (WT)- and MI-FSAP on neointima formation in the mouse femoral artery after wire-induced injury was investigated. Local application of WT-FSAP led to a 70% reduction in the neointima formation, and this effect was dependent on the protease activity of FSAP. MI-FSAP did not inhibit neointima formation in vivo. This is due to a reduced proteolytic activity of MI-FSAP, compared to WT-FSAP, toward platelet-derived growth factor BB, a key mediator of neointima development. The inability of MI-FSAP to inhibit vascular smooth muscle accumulation explains the observed linkage between the MI-polymorphism and increased cardiovascular risk. Hence, FSAP has a protective function in the vasculature, and analysis of MI polymorphism is likely to be clinically relevant in restenosis.


Author(s):  
Yujun Cai ◽  
Xue-Lin Wang ◽  
Jinny Lu ◽  
Xin Lin ◽  
Jonathan Dong ◽  
...  

Objective: Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results: We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21 CIP1 and p27 KIP1 . SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions: These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with PAD.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nahed El-Najjar ◽  
Rashmi P. Kulkarni ◽  
Nancy Nader ◽  
Rawad Hodeify ◽  
Khaled Machaca

Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+signaling, including most prominently an inhibition of the passive ER Ca2+leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+signaling machinery are different.


Sign in / Sign up

Export Citation Format

Share Document