scholarly journals Extracellular Fluid Flow Induces Shallow Quiescence through Physical and Biochemical Cues

2021 ◽  
Author(s):  
Bi Liu ◽  
Xia Wang ◽  
Linan Jiang ◽  
Jianhua Xu ◽  
Yitshak Zohar ◽  
...  

ABSTRACTThe balance between cell quiescence and proliferation is fundamental to tissue physiology and homeostasis. Recent studies have shown that quiescence is not a passive and homogeneous state but actively maintained and heterogeneous. These cellular characteristics associated with quiescence were observed primarily in cultured cells under a static medium. However, cells in vivo face different microenvironmental conditions, particularly, under interstitial fluid flows distributed through extracellular matrices. Interstitial fluid flow exerts shear stress on cells and matrix strain, and results in continuous replacement of extracellular factors. In this study, by analyzing individual cells under varying fluid flow rates in microfluidic devices, we found that extracellular fluid flow alters cellular quiescence depth through flow-induced physical and biochemical cues. Specifically, increasing the flow rate drives cells to shallower quiescence and become more likely to reenter the cell cycle upon growth stimulation. Furthermore, we found that increasing shear stress or extracellular factor replacement individually, without altering other parameters, also results in shallow quiescence. We integrated the experimental results into a mathematical model to gain insight and predict the effects of varying extracellular fluid flow conditions on cellular quiescence depth. Our findings uncover a previously unappreciated mechanism that likely underlies the heterogeneous responses of quiescent cells for tissue repair and regeneration in physiological tissue microenvironments.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Yao ◽  
Yabei Li ◽  
Guanghong Ding

Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells) caused by interstitial fluid flow. The numerical simulation results show the following: (i) the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii) when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii) interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv) capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.


1999 ◽  
Author(s):  
Michael A. Soltz ◽  
Anna Stankiewicz ◽  
Gerard Ateshian ◽  
Robert L. Mauck ◽  
Clark T. Hung

Abstract The objective of this study was to determine the intrinsic hydraulic permeability of 2% agarose hydrogels. Two-percent agarose was chosen because it is a concentration typically used for encapsulation of chondrocytes in suspension cultures [3–5], Hydraulic permeability is a measure of the relative ease by which fluid can pass through a material. Importantly, it governs the level of interstitial fluid flow as well as the interstitial fluid pressurization that is generated in a material during loading. Fluid pressurization is the source of the unique load-bearing and lubrication properties of articular cartilage [1,17] and represents a major component of the in vivo chondrocyte environment. We have previously reported that 2% agarose hydrogels can support fluid pressurization, albeit to a significantly lesser degree than articular cartilage [18]. Interstitial fluid flow gives rise to convective transport of nutrients and ions [6,7] and matrix compaction [9] which may serve as important stimuli to chondrocytes. We report for the first time the strain-dependent hydraulic permeability of 2% agarose hydrogels.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi249-vi249
Author(s):  
Chase Cornelison ◽  
Jessica Yuan ◽  
Caroline Brennan ◽  
Jennifer Munson

2021 ◽  
Author(s):  
Barbara Bachmann ◽  
Sarah Spitz ◽  
Christian Jordan ◽  
Patrick Schuller ◽  
Heinz D Wanzenboeck ◽  
...  

After decades of simply being referred to as the body's sewage system, the lymphatic system has recently been recognized as a key player in numerous physiological and pathological processes. As an essential site of immune cell interactions, the lymphatic system is a potential target for next-generation drug delivery approaches in treatments for cancer, infections, and inflammatory diseases. However, the lack of cell-based assays capable of recapitulating the required biological complexity combined with unreliable in vivo animal models currently hamper scientific progress in lymph-targeted drug delivery. To gain more in-depth insight into the blood-lymph interface, we established an advanced chip-based microvascular model to study mechanical stimulation's importance on lymphatic sprout formation. Our microvascular model's key feature is the co-cultivation of spatially separated 3D blood and lymphatic vessels under controlled, unidirectional interstitial fluid flow while allowing signaling molecule exchange similar to the in vivo situation. We demonstrate that our microphysiological model recreates biomimetic interstitial fluid flow, mimicking the route of fluid in vivo, where shear stress within blood vessels pushes fluid into the interstitial space, which is subsequently transported to the nearby lymphatic capillaries. Results of our cell culture optimization study clearly show an increased vessel sprouting number, length, and morphological characteristics under dynamic cultivation conditions and physiological relevant mechanobiological stimulation. For the first time, a microvascular on-chip system incorporating microcapillaries of both blood and lymphatic origin in vitro recapitulates the interstitial blood-lymph interface.


Author(s):  
T. J. Vaughan ◽  
M. G. Haugh ◽  
L. M. McNamara

Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment. It has been proposed that indirect strain-induced flow of interstitial fluid surrounding bone cells may be the primary mediator of mechanical stimuli in-vivo [1]. Due to the practical difficulties in ascertaining whether interstitial fluid flow is indeed the primary mediator of mechanical stimuli in the in vivo environment, much of the evidence supporting this theory has been established through in vitro investigations that have observed cellular activity in response to fluid flow imposed by perfusion chambers [2]. While such in vitro experiments have identified key mechanisms involved in the mechanotransduction process, the exact mechanical stimulus being imparted to cells within a monolayer is unknown [3]. Furthermoreit is not clear whether the mechanical stimulation is comparable between different experimental systems or, more importantly, is representative of physiological loading conditions experienced by bone cells in vivo.


Author(s):  
Qiuyun Wang ◽  
Shaopeng Pei ◽  
X. Lucas Lu ◽  
Liyun Wang ◽  
Qianhong Wu

2018 ◽  
Vol 29 (16) ◽  
pp. 1927-1940 ◽  
Author(s):  
Ran Li ◽  
Jean Carlos Serrano ◽  
Hao Xing ◽  
Tara A. Lee ◽  
Hesham Azizgolshani ◽  
...  

Tumor tissues are characterized by an elevated interstitial fluid flow from the tumor to the surrounding stroma. Macrophages in the tumor microenvironment are key contributors to tumor progression. While it is well established that chemical stimuli within the tumor tissues can alter macrophage behaviors, the effects of mechanical stimuli, especially the flow of interstitial fluid in the tumor microenvironment, on macrophage phenotypes have not been explored. Here, we used three-dimensional biomimetic models to reveal that macrophages can sense and respond to pathophysiological levels of interstitial fluid flow reported in tumors (∼3 µm/s). Specifically, interstitial flow (IF) polarizes macrophages toward an M2-like phenotype via integrin/Src-mediated mechanotransduction pathways involving STAT3/6. Consistent with this flow-induced M2 polarization, macrophages treated with IF migrate faster and have an enhanced ability to promote cancer cell migration. Moreover, IF directs macrophages to migrate against the flow. Since IF emanates from the tumor to the surrounding stromal tissues, our results suggest that IF could not only induce M2 polarization of macrophages but also recruit these M2 macrophages toward the tumor masses, contributing to cancer cell invasion and tumor progression. Collectively, our study reveals that IF could be a critical regulator of tumor immune environment.


Sign in / Sign up

Export Citation Format

Share Document