scholarly journals Vht hydrogenase is required for hydrogen cycling during nitrogen fixation by the non-hydrogenotrophic methanogen Methanosarcina acetivorans.

2021 ◽  
Author(s):  
Jadelyn M Hoerr ◽  
Ahmed E Dhamad ◽  
Thomas M Deere ◽  
Melissa Chanderban ◽  
Daniel J Lessner

Methanosarcina acetivorans is the primary model to understand the physiology of methanogens that do not use hydrogenase to consume or produce hydrogen (H2) during methanogenesis. The genome of M. acetivorans encodes putative methanophenazine-reducing hydrogenases (Vht and Vhx), F420-reducing hydrogenase (Frh), and hydrogenase maturation machinery (Hyp), yet cells lack significant hydrogenase activity under all growth conditions tested to date. Thus, the importance of hydrogenase to the physiology of M. acetivorans has remained a mystery. M. acetivorans can fix dinitrogen (N2) using nitrogenase that is documented in bacteria to produce H2 during the reduction of N2 to ammonia. Therefore, we hypothesized that M. acetivorans uses hydrogenase to recycle H2 produced by nitrogenase during N2 fixation. Results demonstrate that hydrogenase expression and activity is higher in N2-grown cells compared to cells grown with fixed nitrogen (NH4Cl). To test the importance of each hydrogenase and the maturation machinery, the CRISPRi-dCas9 system was used to generate separate M. acetivorans strains where transcription of the vht, frh, vhx, or hyp operons is repressed. Repression of vhx and frh does not alter growth with either NH4Cl or N2 and has no effect on H2 metabolism. However, repression of vht or hyp results in impaired growth with N2 but not NH4Cl. Importantly, H2 produced endogenously by nitrogenase is detected in the headspace of culture tubes containing the vht or hyp repression strains. Overall, the results reveal that Vht hydrogenase recycles H2 produced by nitrogenase that is required for optimal growth of M. acetivorans during N2 fixation.

Author(s):  
Suzanna L. Bräuer ◽  
Hinsby Cadillo-Quiroz ◽  
Rebekah J. Ward ◽  
Joseph B. Yavitt ◽  
Stephen H. Zinder

A novel acidiphilic, hydrogenotrophic methanogen, designated strain 6A8T, was isolated from an acidic (pH 4.0–4.5) and ombrotrophic (rain-fed) bog located near Ithaca, NY, USA. Cultures were dimorphic, containing thin rods (0.2–0.3 μm in diameter and 0.8–3.0 μm long) and irregular cocci (0.2–0.8 μm in diameter). The culture utilized H2/CO2 to produce methane but did not utilize formate, acetate, methanol, ethanol, 2-propanol, butanol or trimethylamine. Optimal growth conditions were near pH 5.1 and 35 °C. The culture grew in basal medium containing as little as 0.43 mM Na+ and growth was inhibited completely by 50 mM NaCl. To our knowledge, strain 6A8T is one of the most acidiphilic (lowest pH optimum) and salt-sensitive methanogens in pure culture. Acetate, coenzyme M, vitamins and yeast extract were required for growth. It is proposed that a new genus and species be established for this organism, Methanoregula boonei gen. nov., sp. nov. The type strain of Methanoregula boonei is 6A8T (=DSM 21154T =JCM 14090T).


1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyudmila P. Trenozhnikova ◽  
Almagul K. Khasenova ◽  
Assya S. Balgimbaeva ◽  
Galina B. Fedorova ◽  
Genrikh S. Katrukha ◽  
...  

We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified asStreptomycessp. IMV-70. In the process of fermentation, the strainStreptomycesspp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.


1974 ◽  
Vol 20 (10) ◽  
pp. 1403-1409 ◽  
Author(s):  
B. G. Foster ◽  
Mary O. Hanna

Aeromonas proteolytica was grown for various time periods in nutrient broth, tryptic soy broth, a semisynthetic medium, and 1 and 5% peptone under different conditions involving temperature and in continuous shake and stationary flasks. The cell-free culture filtrates were tested for hemolytic, endopeptidase, and dermonecrotic activity and optimal growth conditions for their production were determined. The dermonecrotic activity and endopeptidase activity was found to be parallel in all tests, while hemolysin was independent of the other two. Studies on the thermal stability of the culture filtrate revealed that hemolysin and dermonecrotic and endopeptidase activity were destroyed at 70 °C for 30 min. Fractionation of the filtrate by Sephadex G-200 resolved three peaks at 280 nm. Peak I was inactive; peak II contained endopeptidase and dermonecrotic and hemolytic activity; peak III contained pigment and hemolysin. Evidence is presented that the endopeptidase and dermonecrotic substance found in the cell-free filtrates of A. proteolytica grown medium appear at the same time and thus may be the same entity.


Author(s):  
Yulia V Bertsova ◽  
Marina V Serebryakova ◽  
Alexander A Baykov ◽  
Alexander V Bogachev

Abstract Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin) acting as an electron donor for nitrogenase. However, the relative contribution of Rnf into nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We have constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated a markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defect under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between FMN and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.


Author(s):  
Ben Hadj-Daoud H ◽  
◽  
Ben Salem I ◽  
Boughalleb-M’Hamdi N ◽  
◽  
...  

Background: Colletotrichum gloeosporioides is important plant pathogens on a wide range of plant hosts such as citrus causing pre- or post-harvest infections as anthracnose, post-bloom fruit drop, tearstain and stem-end rot on fruit, or wither-tip of twigs. Method: The optimization of growth conditions of this pathogen was performed (solid media, temperature, pH and water potential under laboratory experiments). Results: Our results revealed that the maximum radial growth of C. gloeosporioides was recorded on SDA medium. All isolates were able to grow on PDA at temperatures of 15 and 30°C (over 0.7cm/day). Optimal growth radial was recorded at pH 5, 6, 7 and 8. Similar responses were obtained with both salt types, but, in general, C. gloeosporioides was more tolerant to KCl than NaCl. Conclusion: Studies of cultural, morphological traits of the pathogen are prominent to understand the response of the pathogen in different environmental and nutritional conditions.


2010 ◽  
Vol 60 (12) ◽  
pp. 2996-3001 ◽  
Author(s):  
Shi-Ping Tian ◽  
Yong-Xia Wang ◽  
Bin Hu ◽  
Xiao-Xia Zhang ◽  
Wei Xiao ◽  
...  

A novel alkaliphilic, halotolerant, rod-shaped bacterium, designated strain YIM CH208T, was isolated from a soda lake in Yunnan, south-west China. The taxonomy of strain YIM CH208T was investigated by a polyphasic approach. Strain YIM CH208T was Gram-negative, strictly aerobic and non-motile and formed red colonies. Optimal growth conditions were 28 °C, pH 8.5 and 0.5–2.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the isolate formed a distinct line within a clade containing the genus Echinicola in the phylum Bacteroidetes and was related to the species Echinicola pacifica and Rhodonellum psychrophilum, with sequence similarity of 91.7 and 91.6 % to the respective type strains. The DNA G+C content was 45.1 mol%. The major respiratory quinone was menaquinone-7 (MK-7). The predominant cellular fatty acids were iso-C17 : 1 ω9c (19.9 %), C15 : 0 3-OH (12.1 %), iso-C17 : 0 3-OH (11.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 10.7 %) and C17 : 1 ω6c (8.7 %). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain YIM CH208T represents a novel species of a new genus, for which the name Litoribacter ruber gen. nov., sp. nov. is proposed. The type strain of Litoribacter ruber is YIM CH208T (=ACCC 05414T =KCTC 22899T).


2014 ◽  
Vol 36 (spe1) ◽  
pp. 01-16 ◽  
Author(s):  
Alma Rosa González-Esquinca ◽  
Iván De-La-Cruz-Chacón ◽  
Marisol Castro-Moreno ◽  
José Agustín Orozco-Castillo ◽  
Christian Anabi Riley- Saldaña

Chemical studies of the plant family Annonaceae have intensified in the last several decades due to the discovery of annonaceous molecules with medicinal potential (e.g., benzylisoquinoline alkaloids and acetogenins). Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 genera. In addition, until 2004, 593 annonaceous acetogenins (ACGs) had been identified, from 51 species in 13 genera.This suggests that plants from this family allocate important resources to the biosynthesis of these compounds. Despite the diversity of these molecules, their biological roles, including their physiological and/or ecological functions, are not well understood. In this study, it was provided new data describing the variety and distribution of certain alkaloids and ACGs in annonaceous plants in distinct stages of development. The potential relationships among some of these compounds and the seasonally climatic changes occurring in the plant habitat are also discussed. These data will improve our understanding of the secondary metabolism of these pharmacologically important molecules and their expression patterns during development, which will help to determine the optimal growth conditions and harvest times for their production.


2018 ◽  
Vol 31 (3) ◽  
pp. 1855-1862 ◽  
Author(s):  
Xu Gao ◽  
Han Gil Choi ◽  
Seo Kyoung Park ◽  
Zhong Min Sun ◽  
Ki Wan Nam

Sign in / Sign up

Export Citation Format

Share Document