scholarly journals Actin dynamics regulation by TTC7A/PI4KIIIα axis limits DNA damage and cell death during leukocyte migration

2021 ◽  
Author(s):  
Tania Gajardo ◽  
Marie Lo ◽  
Mathilde Bernard ◽  
Claire Leveau ◽  
Marie-Therese El-Daher ◽  
...  

The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cell processes, including cell migration. Mutations in the TTC7A gene have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. Although several cellular functions have been associated with TTC7A, the role of the protein in the maintenance of the immune homeostasis is still poorly understood. Here we leverage microfabricated devices to investigate the impact of TTC7A deficiency in leukocytes migration at the single cell level. We show that TTC7A-deficient leukocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositides signaling, leading to the downregulation of the PI3K/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamic. This resulted in impaired cell motility, accumulation of DNA damage and increased cell death during chemotaxis in dense 3D gels. Our results highlight a novel role of TTC7A as a critical regulator of leukocyte migration. Impairment of this cellular function is likely to contribute to pathophysiology underlying progressive immunodeficiency in patients.

2005 ◽  
Vol 16 (7) ◽  
pp. 3107-3116 ◽  
Author(s):  
Anindya Ghosh-Roy ◽  
Bela S. Desai ◽  
Krishanu Ray

Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.


Hepatology ◽  
2014 ◽  
Vol 60 (3) ◽  
pp. 1110-1111 ◽  
Author(s):  
Emeric Limagne ◽  
Vanessa Cottet ◽  
Alexia Karen Cotte ◽  
Samia Hamza ◽  
Patrick Hillon ◽  
...  

2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


2019 ◽  
Vol 48 (1) ◽  
pp. 68
Author(s):  
Michael E. Devitt ◽  
Robert Dreicer

<p>The aim of this article is to review the current role of genomic testing in the risk, prognosis, and treatment of genitourinary malignancies. The authors selected guidelines, publications, and abstracts relevant to the current and emerging role of genomics in genitourinary cancers. The risk of developing genitourinary cancer can be stratified based on genomic data. Prostate cancer has the strongest degree of heritability, with <em>BRCA1/2 </em>and <em>HOXB13 </em>mutations playing a role in familial disease. Genomic data is on the verge of informing treatment decisions across genitourinary cancers. mCRPC has diverse genomic alterations that represent potential therapeutic targets, including alterations in the AR pathway, DNA damage and repair pathways, cell cycle pathways, PI3K pathway, and Wnt signaling. Genomic alterations in clear cell renal cell carcinoma can inform prognosis and mutations in mTOR pathways predict response to mTOR inhibitors. Urothelial carcinoma can be classified into different subtypes based on gene expression profiling, which provides prognostic information and predicts response to chemotherapy and immunotherapy. Specific mutations have been identified that predict response to therapy including <em>ERCC2 </em>mutations and cisplatin, DNA damage and repair mutations and checkpoint inhibitors, and <em>FGFR3 </em>mutations and FGFR tyrosine kinase inhibitors such as erdafitinib.</p><p><strong>Conclusion. </strong>Genitourinary malignancies have not felt the impact of genomic data as greatly as other cancer types. The majority of benefit lies in identifying patients at high risk of genitourinary cancer. Fortunately, breakthroughs are on the horizon that will result in a greater incorporation of genomic information into treatment decisions for patients with genitourinary cancer.</p>


1996 ◽  
Vol 271 (1) ◽  
pp. F209-F215 ◽  
Author(s):  
H. Hagar ◽  
N. Ueda ◽  
S. V. Shah

Hypoxia is considered to result in a necrotic form of cell injury. We have recently demonstrated a role of endonuclease activation, generally considered a feature of apoptosis, to be almost entirely responsible for DNA damage in hypoxic injury to renal tubular epithelial cells. The role of reactive oxygen metabolites in endonuclease-induced DNA damage and cell death in chemical hypoxic injury has not been previously examined. LLC-PK1 cells exposed to chemical hypoxia with antimycin A resulted in enhanced generation of intracellular reactive oxygen species as measured by oxidation of a sensitive fluorescent probe, 2',7'-dichlorofluorescin diacetate. Superoxide dismutase, a scavenger of superoxide radical, significantly reduced the fluorescence induced by antimycin A and provided significant protection against chemical hypoxia-induced DNA strand breaks (as measured by the alkaline unwinding assay). Pyruvate, a scavenger of hydrogen peroxide, provided significant protection against chemical hypoxia-induced DNA strand breaks and DNA fragmentation (as measured by agarose gel electrophoresis). The interaction between superoxide anion and hydrogen peroxide in the presence of a metal catalyst leads to generation of other oxidant species such as hydroxyl radical. Hydroxyl radical scavengers, dimethylthiourea, salicylate, and sodium benzoate, and two metal chelators, deferoxamine and 1,10-phenanthroline, also provided marked protection against DNA strand breaks and DNA fragmentation. These scavengers of reactive oxygen metabolites and metal chelators provided significant protection against cell death as measured by trypan blue exclusion and lactate dehydrogenase release. Taken together, these data indicate that reactive oxygen species play an important role in the endonuclease activation and consequent DNA damage, as well as cell death in chemical hypoxic injury to renal tubular epithelial cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 100 ◽  
Author(s):  
Gur P. Kaushal ◽  
Kiran Chandrashekar ◽  
Luis A. Juncos ◽  
Sudhir V. Shah

Autophagy is a dynamic process by which intracellular damaged macromolecules and organelles are degraded and recycled for the synthesis of new cellular components. Basal autophagy in the kidney acts as a quality control system and is vital for cellular metabolic and organelle homeostasis. Under pathological conditions, autophagy facilitates cellular adaptation; however, activation of autophagy in response to renal injury may be insufficient to provide protection, especially under dysregulated conditions. Kidney-specific deletion of Atg genes in mice has consistently demonstrated worsened acute kidney injury (AKI) outcomes supporting the notion of a pro-survival role of autophagy. Recent studies have also begun to unfold the role of autophagy in progressive renal disease and subsequent fibrosis. Autophagy also influences tubular cell death in renal injury. In this review, we reported the current understanding of autophagy regulation and its role in the pathogenesis of renal injury. In particular, the classic mammalian target of rapamycin (mTOR)-dependent signaling pathway and other mTOR-independent alternative signaling pathways of autophagy regulation were described. Finally, we summarized the impact of autophagy activation on different forms of cell death, including apoptosis and regulated necrosis, associated with the pathophysiology of renal injury. Understanding the regulatory mechanisms of autophagy would identify important targets for therapeutic approaches.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 378 ◽  
Author(s):  
Carlos Camilleri-Robles ◽  
Florenci Serras ◽  
Montserrat Corominas

The GADD45 proteins are induced in response to stress and have been implicated in the regulation of several cellular functions, including DNA repair, cell cycle control, senescence, and apoptosis. In this study, we investigate the role of D-GADD45 during Drosophila development and regeneration of the wing imaginal discs. We find that higher expression of D-GADD45 results in JNK-dependent apoptosis, while its temporary expression does not have harmful effects. Moreover, D-GADD45 is required for proper regeneration of wing imaginal discs. Our findings demonstrate that a tight regulation of D-GADD45 levels is required for its correct function both, in development and during the stress response after cell death.


2014 ◽  
Vol 306 (8) ◽  
pp. C753-C761 ◽  
Author(s):  
Rachel A. Cleary ◽  
Ruping Wang ◽  
Omar Waqar ◽  
Harold A. Singer ◽  
Dale D. Tang

c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.


2020 ◽  
Author(s):  
Montserrat Lara-Velazquez ◽  
Natanael Zarco ◽  
Anna Carrano ◽  
Jordan Phillipps ◽  
Emily S Norton ◽  
...  

Abstract Background Glioblastomas (GBMs) are the most common primary brains tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for reasons that remain unknown. One potential explanation is the proximity of these tumors to the cerebrospinal fluid (CSF) and its contained chemical cues that can regulate cellular migration and differentiation. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. Methods We utilized patient-derived CSF and primary cultures of GBM brain tumor initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using TCGA database. SERPINA3 expression changes were evaluated at both the mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell behavior were evaluated by transwell assay (for cell migration), and alamar blue and Ki67 (for viability and proliferation respectively). Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. Results GBM CSF induced a significant increase in BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. Silencing of SERPINA3 induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 overexpression increased cell migration. In vivo, mice orthotopically-injected with SERPINA3 KD BTICs showed increased survival. Conclusions SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


Sign in / Sign up

Export Citation Format

Share Document