scholarly journals RAP1 regulates TIP60 function during fate transition between 2 cell-like and pluripotent states

2021 ◽  
Author(s):  
Agnel Sfeir ◽  
Raymond Barry ◽  
Jacques Cote ◽  
Amel Mameri ◽  
Olivia sacco ◽  
...  

In mammals, the conserved telomere binding protein RAP1 serves a diverse set of non-telomeric functions including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which RAP1 modulates gene expression. Using a separation-of-function allele, we show that RAP1 transcriptional regulation is independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, RAP1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of RAP1 in mouse embryonic stem cells increases the fraction of 2-cell-like cells. Specifically, RAP1 enhances the repressive activity of Tip60/p400 across a subset of 2-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential upregulation of genes proximal to MERVL elements in Rap1 deficient settings implicate these endogenous retroviral elements in the de-repression of proximal genes. Altogether, our study reveals an unprecedented link between RAP1 and TIP60/p400 complex in the regulation of totipotency.

2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


1991 ◽  
Vol 280 (3) ◽  
pp. 777-781
Author(s):  
G Weiss ◽  
H Talasz ◽  
B Puschendorf

The role of histone acetylation and DNA synthesis has been investigated extensively in the regenerating rat liver system in the presence and absence of the cyclophosphamide derivative mafosfamide. We demonstrate a mafosfamide-induced inhibition of maximum histone acetyltransferase activity followed by a second elevation of enzyme activity and an accompanying total suppression of DNA synthesis for 7-8 h. The maximum of histone acetyltransferase activity, in parallel with an elevated acetylation in vivo, the consecutive replacement of histone H1(0) amd initiation of replication occur sequentially in the presence and absence of mafosfamide, but with a temporary delay of 7-8 h. Our data indicate that modifications of histone acetyltransferase (EC 2.3.1.48) activity do not significantly influence the acetylation patterns of histones H3 and H4. The mafosfamide-induced change of histone acetyltransferase activity and acetylation in vivo, the shift of histone H1(0) exchange and the consecutive transition of initiation of replication suggest that these three events might be functionally related.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


1998 ◽  
Vol 18 (2) ◽  
pp. 1049-1054 ◽  
Author(s):  
José Pérez-Martín ◽  
Alexander D. Johnson

ABSTRACT The yeast GCN5 gene encodes the catalytic subunit of a nuclear histone acetyltransferase and is part of a high-molecular-weight complex involved in transcriptional regulation. In this paper we show that full activation of the HOpromoter in vivo requires the Gcn5 protein and that defects in this protein can be suppressed by deletion of the RPD3 gene, which encodes a histone deacetylase. These results suggest an interplay between acetylation and deacetylation of histones in the regulation of the HO gene. We also show that mutations in either the H4 or the H3 histone gene, as well as mutations in the SIN1gene, which encodes an HMG1-like protein, strongly suppress the defects produced by the gcn5 mutant. These results suggest a hierarchy of action in the process of chromatin remodeling.


1975 ◽  
Vol 53 (7) ◽  
pp. 796-803 ◽  
Author(s):  
E. P. M. Candido

Histone acetyltransferase activity of trout testis was studied both in intact nuclei, and in high salt nuclear extracts, With intact nuclei, the distribution of incorporated [14C]acetate in the various histones was similar to that observed in vivo; the arginine-rich histones H3 and H4 showed the highest specific activities, and lower amounts of label were detected in histones H2a and H2b. Histone H1 incorporated little or no label. Acetyltransferase activity could be detected in purified, sheared chromatin after the addition of MgCl2 or KCl, suggesting that the enzyme is bound to chromatin.Treatment of nuclei with 0,4 M NaCl caused the dissociation of acetyltransferase activity. Most of this solubilized activity failed to bind to DEAE Sephadex and behaved as a high molecular weight heterogeneous complex on Sephadex G-100, suggesting that the enzyme is present as an aggregate with other proteins in the extract. The pH optimum of this preparation was approximately 8.5, and the enzyme showed a preference for histones H3 and H4 as substrates.


1998 ◽  
Vol 12 (5) ◽  
pp. 627-639 ◽  
Author(s):  
M.-H. Kuo ◽  
J. Zhou ◽  
P. Jambeck ◽  
M. E.A. Churchill ◽  
C. D. Allis

2013 ◽  
Vol 33 (9) ◽  
pp. 1845-1858 ◽  
Author(s):  
Da-Hai Yu ◽  
Carol Ware ◽  
Robert A. Waterland ◽  
Jiexin Zhang ◽  
Miao-Hsueh Chen ◽  
...  

During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activationin vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation.


1999 ◽  
Vol 73 (2) ◽  
pp. 1734-1739 ◽  
Author(s):  
Maria Nemethova ◽  
Erhard Wintersberger

ABSTRACT Using coimmunoprecipitation and glutathioneS-transferase pulldown experiments, we found that polyomavirus large T antigen binds to p300 in vivo and in vitro. The N-terminal region of the viral protein, including the pRB binding motif, was dispensable for this interaction, which involved several regions within the C-terminal half of the large T antigen. Interestingly, anti-T antibody coimmunoprecipitated a subspecies of p300 which has high histone acetyltransferase activity.


Sign in / Sign up

Export Citation Format

Share Document