scholarly journals Endothelial Rap1B mediates T-cell exclusion to promote tumor growth -a novel mechanism underlying vascular immunosuppression

2021 ◽  
Author(s):  
Guru Prasad Sharma ◽  
Ramoji Kosuru ◽  
Sribalaji Lakshmikanthan ◽  
Shikan Zheng ◽  
Yao Chen ◽  
...  

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor (VEGF) modulates tumor EC response to exclude T cells are not well understood. The goal was to determine the role of EC Rap1B, a small GTPase that positively regulates VEGFangiogenesis during development, in tumor growth in vivo. Using mouse models of Rap1B deficiency, Rap1B+/- and EC-specific Rap1B KO (Rap1BiΔEC) we demonstrate that EC Rap1B restricts tumor growth and angiogenesis. More importantly, EC-specific Rap1B deletion leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T cells. We find that tumor growth, albeit not angiogenesis, is restored in Rap1BiΔEC mice by depleting CD8+ T cells. Mechanistically, global transcriptome analysis indicated upregulation of the tumor cytokine, TNF-α, -induced signaling and NFκB transcriptional activity in Rap1B-deficient ECs. Functionally, EC Rap1B deletion led to upregulation of NFκB activity and enhanced Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was upregulated also in tumor ECs from Rap1BiΔEC mice, vs. controls. Significantly, deletion of Rap1B abrogated VEGF immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-dependent desensitization of EC to pro-inflammatory stimuli. Significantly, they identify EC Rap1 as a potential novel vascular target in cancer immunotherapy.

2014 ◽  
Vol 204 (2) ◽  
pp. 247-263 ◽  
Author(s):  
Christine Jean ◽  
Xiao Lei Chen ◽  
Ju-Ock Nam ◽  
Isabelle Tancioni ◽  
Sean Uryu ◽  
...  

Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant vascular endothelial growth factor (VEGF-A) and tumor-induced VEC-Y658 phosphorylation in vivo. Adherence of VEGF-expressing tumor cells to ECs triggered FAK-dependent VEC-Y658 phosphorylation. Both FAK inhibition and VEC-Y658F mutation within ECs prevented VEGF-initiated paracellular permeability and tumor cell transmigration across EC barriers. In mice, EC FAK inhibition prevented VEGF-dependent tumor cell extravasation and melanoma dermal to lung metastasis without affecting primary tumor growth. As pharmacological c-Src or FAK inhibition prevents VEGF-stimulated c-Src and FAK translocation to EC adherens junctions, but FAK inhibition does not alter c-Src activation, our experiments identify EC FAK as a key intermediate between c-Src and the regulation of EC barrier function controlling tumor metastasis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3563-3563
Author(s):  
Ji-Young Lim ◽  
Mi-Sun Choi ◽  
Eun Young Choi ◽  
Hyewon Youn ◽  
Chang-Ki Min

Abstract Abstract 3563 Poster Board III-500 The therapeutic potential of allogeneic hematopoietic stem cell transplantation (HSCT) relies on the graft-versus-leukemia (GVL) effect to eradicate residual tumor cells by immunologic mechanisms. However, the relationship of conditioning intensity to GVL effect has not been clearly established independent of immunosuppression or the tolerance induced by mixed donor-host chimerism. Using a murine allogeneic HSCT model, we have compared two total body irradiation (TBI) doses (1,300 vs. 900 cGy), both of which provided complete donor engraftment and elimination of host lympho-hematopoetic cells. We used C57BL/6 (H-2b) → B6D2F1 (H-2b/d) model of GVHD, which differ at major and minor histocompatibility loci, to address the role of conditioning intensity on the GVL effect. Lethally irradiated (either 900 or 1300 cGy) recipient mice were transplanted with either C57BL/6 (allogeneic) or B6D2F1 (syngeneic) bone marrow (5 × 106) and spleen T cells (1 × 106) on day 0 and then P815 (H-2d) mastocytoma cells (1 × 106) injected subcutaneously on day 1 to generate a GVL model. As expected, GVHD morbidity after the higher TBI dose was aggravated compared to the lower TBI dose (P<.05). Among the syngeneic recipients, the injection of P815 cells into the recipient skin led to progressive tumor growth and death of about 100% 21 days after transplant regardless of the TBI dose. In contrast, tumor growth was remarkably suppressed and tumor death was not observed in the allogeneic recipients. Surprisingly, tumors in the allogeneic recipients receiving 1300 cGy TBI exhibited markedly delayed growth in vivo compared to those with 900 cGy (tumor volume on day 42, 428 vs. 8735mm3, P<.01), which was associated with an increase in the in vivo cytotoxicity using comparing the clearance of infused allogeneic B cells labeled with CFSE reflecting the enhanced alloimmune reactivity. To ask whether the diminished GVL effect after the lower TBI dose was due to reduced production of inflammatory cytokines, we measured the levels of TNF-α or IFN-γ in recipient sera on days 6, 28 and 42 after transplantation and did not find any significant difference according to the intensity of radiation dose (P>.05). In parallel, the in vitro P815-specific TNF-α or IFN-γ responses of splenocytes were comparable between the two doses. The percentages of donor T cells to undergo proliferation or apoptosis in response to alloantigens in vivo between the two TBI doses also were comparable (P>.05). Collectively, these data indicate that the impaired ability of alloreacive T cells to inhibit tumor growth after the lower TBI dose was not attributed to an intrinsic defect in T-cell expansion and activation. We next analyzed the spleen for the number of donor CD4+ and CD8+ T cells and observed no difference between the two TBI doses. In contrast to spleen, the number of CD8+ but not CD4+ T cells from the recipients that had received 1300 cGy was significantly increased in the skin (P<05). The effector function of donor CD8+ and CD4+ cells in both spleen and tumor tissue was examined by intracellular staining for IFN-γ. In the spleen, the percentages of CD8+ and CD4+ T cells expressing IFN-γ were not different between the two TBI doses. (5.9% vs 4.8%, P>.05, and 7.6% vs. 6.5%, P>.05 respectively) By contrast, 45.5% and 50.3% of CD8+ and CD4+ T cells, respectively, isolated from the tumor tissue of recipients receiving the higher TBI dose were IFN-γ; secreting cells, whereas only 25.5% and 16.3% of those cells from the tumor tissue of recipients treated with the lower dose showed this phenotype (P<.01 and <.05, respectively). After the higher TBI dose, secondary lymphoid organ homing receptors including CD62L and CCR7 were down-regulated on donor CD8+ T cells while CD44 expression was up-regulated compared to the lower TBI dose, which may facilitate migration to the tumor sites. In summary, the higher TBI dose (1300 vs. 900 cGy) resulted in significantly enhanced GVL effect, and the alterations in effector T cell trafficking into tumor tissue are the most likely mechanism. Moreover, T-cell activation and function were largely comparable between these conditioning regimens. This provides the rationale for targeting T cell trafficking by inflammation, possibly in combination with integrin or chemokine receptor agonists as a new therapeutic approach in leukemia relapse after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (18) ◽  
pp. 6064-6079 ◽  
Author(s):  
Thomas Neill ◽  
Carolyn G. Chen ◽  
Simone Buraschi ◽  
Renato V. Iozzo

Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo. Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hye-Ran Kim ◽  
Jeong-Su Park ◽  
Jin-Hwa Park ◽  
Fatima Yasmin ◽  
Chang-Hyun Kim ◽  
...  

Abstract Background Transgelin-2 is a 22 kDa actin-binding protein that has been proposed to act as an oncogenic factor, capable of contributing to tumorigenesis in a wide range of human malignancies. However, little is known whether this tiny protein also plays an important role in immunity, thereby keeping body from the cancer development and metastasis. Here, we investigated the functions of transgelin-2 in dendritic cell (DC) immunity. Further, we investigated whether the non-viral transduction of cell-permeable transgelin-2 peptide potentially enhance DC-based cancer immunotherapy. Methods To understand the functions of transgelin-2 in DCs, we utilized bone marrow-derived DCs (BMDCs) purified from transgelin-2 knockout (Tagln2−/−) mice. To observe the dynamic cellular mechanism of transgelin-2, we utilized confocal microscopy and flow cytometry. To monitor DC migration and cognate T–DC interaction in vivo, we used intravital two-photon microscopy. For the solid and metastasis tumor models, OVA+ B16F10 melanoma were inoculated into the C57BL/6 mice via intravenously (i.v.) and subcutaneously (s.c.), respectively. OTI TCR T cells were used for the adoptive transfer experiments. Cell-permeable, de-ubiquitinated recombinant transgelin-2 was purified from Escherichia coli and applied for DC-based adoptive immunotherapy. Results We found that transgelin-2 is remarkably expressed in BMDCs during maturation and lipopolysaccharide activation, suggesting that this protein plays a role in DC-based immunity. Although Tagln2−/− BMDCs exhibited no changes in maturation, they showed significant defects in their abilities to home to draining lymph nodes (LNs) and prime T cells to produce antigen-specific T cell clones, and these changes were associated with a failure to suppress tumor growth and metastasis of OVA+ B16F10 melanoma cells in mice. Tagln2−/− BMDCs had defects in filopodia-like membrane protrusion and podosome formation due to the attenuation of the signals that modulate actin remodeling in vitro and formed short, unstable contacts with cognate CD4+ T cells in vivo. Strikingly, non-viral transduction of cell-permeable, de-ubiquitinated recombinant transgelin-2 potentiated DC functions to suppress tumor growth and metastasis. Conclusion This work demonstrates that transgelin-2 is an essential protein for both cancer and immunity. Therefore, transgelin-2 can act as a double-edged sword depending on how we apply this protein to cancer therapy. Engineering and clinical application of this protein may unveil a new era in DC-based cancer immunotherapy. Our findings indicate that cell-permeable transgelin-2 have a potential clinical value as a cancer immunotherapy based on DCs.


Tumor Biology ◽  
2017 ◽  
Vol 39 (11) ◽  
pp. 101042831772684 ◽  
Author(s):  
Appu Rathinavelu ◽  
Khalid Alhazzani ◽  
Sivanesan Dhandayuthapani ◽  
Thanigaivelan Kanagasabai

Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancers. This study was aimed to explore the anti-angiogenic activity of a novel vascular endothelial growth factor receptor–specific inhibitor named F16 in both in vitro and in vivo experimental models. This compound effectively reduced cell proliferation, tube formation, and migration of human umbilical vein endothelial cells in a concentration-dependent manner by directly inhibiting vascular endothelial growth factor binding and subsequent vascular endothelial growth factor receptor-2 phosphorylation. The F16 was also able to inhibit the phosphoinositide 3-kinase/protein kinase B–mediated survival and migration pathways in cancer in addition to inhibiting the focal adhesion kinase and mitogen-activated protein kinases–mediated signaling in GI-101A cancer cells. The chorioallantoic membrane assay followed by tumor growth inhibition measurements with GI-101A breast cancer xenograft implanted athymic nude mice confirmed the in vivo tumor reductive effects of F16. It was interesting to observe a decrease in tumor burden after F16 treatment which correlated very well with the decrease in the plasma levels of mucin-1 (MUC-1). Our studies so far have confirmed that F16 is a specific inhibitor of angiogenesis in both in vitro and in vivo models. The F16 also works very efficiently with Taxol in combination by limiting the tumor growth that is better than the monotherapy with any one of the drugs that were tested individually. Thus, F16 offers a promising anti-proliferative and anti-angiogenic effects with better specificity than some of the existing multi-kinase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document