scholarly journals Fast anther dehiscence state recognition system establishing by deep learning to screen heat tolerant cotton

2021 ◽  
Author(s):  
Zhihao Tan ◽  
Jiawei Shi ◽  
Rongjie Lv ◽  
Qingyuan Li ◽  
Jing Yang ◽  
...  

Cotton is one of the most economically important crops in the world. The fertility of male reproductive organs is a key determinant of cotton yield. The anther dehiscence or indehiscence directly determine the probability of fertilization in cotton. Thus, the rapid and accurate identification of cotton anther dehiscence status is important for judging anther growth status and promoting genetic breeding research. The development of computer vision technology and the advent of big data have prompted the application of deep learning techniques to agricultural phenotype research. Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to detect the number and dehiscence status of anthers. The single-stage model based on YOLOv5 has higher recognition efficiency and the ability to deploy to the mobile end. Breeding researchers can apply this model to terminals to achieve a more intuitive understanding of cotton anther dehiscence status. Moreover, three improvement strategies of Faster R-CNN model were proposed, the improved model has higher detection accuracy than YOLOv5 model. In addition, the percentage of dehiscent anther of randomly selected 30 cotton varieties were observed from cotton population under normal temperature and high temperature (HT) conditions through the integrated Faster R-CNN model and manual observation. The result showed HT varying decreased the percentage of dehiscent anther in different cotton lines, consistent with the manual method. Thus, this system can help us to rapid and accurate identification of HT-tolerant cotton.

2021 ◽  
Author(s):  
Zhihao Tan ◽  
Jiawei Shi ◽  
Rongjie Lv ◽  
Qingyuan Li ◽  
Jing Yang ◽  
...  

Abstract BackgroundCotton is one of the most economically important crops in the world. The fertility of male reproductive organs is a key determinant of cotton yield. The anther dehiscence or indehiscence directly determine the probability of fertilization in cotton. Thus, the rapid and accurate identification of cotton anther dehiscence status is important for judging anther growth status and promoting genetic breeding research. The development of computer vision technology and the advent of big data have prompted the application of deep learning techniques to agricultural phenotype research. Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to detect the number and dehiscence status of anthers. ResultThe single-stage model based on YOLOv5 has higher recognition efficiency and the ability to deploy to the mobile end. Breeding researchers can apply this model to terminals to achieve a more intuitive understanding of cotton anther dehiscence status. Moreover, three improvement strategies of Faster R-CNN model were proposed, the improved model has higher detection accuracy than YOLOv5 model. We have made four improvements to the Faster R-CNN model and after the ensemble of the four models, R2 of “open” reaches 0.8765, R2 of “close” reaches 0.8539, R2 of “all” reaches 0.8481, higher than the prediction result of either model alone, and can completely replace the manual counting method. We can use this model to quickly extract the dehiscence rate of cotton anther under high temperature (HT) condition. In addition, the percentage of dehiscent anther of randomly selected 30 cotton varieties were observed from cotton population under normal conditions and HT conditions through the ensemble of Faster R-CNN model and manual observation. The result showed HT varying decreased the percentage of dehiscent anther in different cotton lines, consistent with the manual method. ConclusionsThe deep learning technology first time been applied to cotton anther dehiscence status recognition instead of manual method to quickly screen the HT tolerant cotton varieties and can help to explore the key genetic improvement genes in the future, promote cotton breeding and improvement.


2021 ◽  
Author(s):  
Ghazaala Yasmin ◽  
ASIT KUMAR DAS ◽  
Janmenjoy Nayak ◽  
S Vimal ◽  
Soumi Dutta

Abstract Speech is one of the most delicate medium through which gender of the speakers can easily be identified. Though the related research has shown very good progress in machine learning but recently, deep learning has imparted a very good research area to explore the deficiency of gender discrimination using traditional machine learning techniques. In deep learning techniques, the speech features are automatically generated by the reinforcement learning from the raw data which have more discriminating power than the human generated features. But in some practical situations like gender recognition, it is observed that combination of both types of features sometimes provides comparatively better performance. In the proposed work, we have initially extracted and selected some informative and precise acoustic features relevant to gender recognition using entropy based information theory and Rough Set Theory (RST). Next, the audio speech signals are directly fed into the deep neural network model consists of Convolution Neural Network (CNN) and Gated Recurrent Unit network (GRUN) for extracting features useful for gender recognition. The RST selects precise and informative features, CNN extracts the locally encoded important features, and GRUN reduces the vanishing gradient and exploding gradient problems. Finally, a hybrid gender recognition system is developed combining both generated feature vectors. The developed model has been tested with five bench mark and a simulated dataset to evaluate its performance and it is observed that combined feature vector provides more effective gender recognition system specially when transgender is considered as a gender type together with male and female.


Author(s):  
Dr. I. Jeena Jacob

The biometric recognition plays a significant and a unique part in the applications that are based on the personal identification. This is because of the stability, irreplaceability and the uniqueness that is found in the biometric traits of the humans. Currently the deep learning techniques that are capable of strongly generalizing and automatically learning, with the enhanced accuracy is utilized for the biometric recognition to develop an efficient biometric system. But the poor noise removal abilities and the accuracy degradation caused due to the very small disturbances has made the conventional means of the deep learning that utilizes the convolutional neural network incompatible for the biometric recognition. So the capsule neural network replaces the CNN due to its high accuracy in the recognition and the classification, due to its learning capacities and the ability to be trained with the limited number of samples compared to the CNN (convolutional neural network). The frame work put forward in the paper utilizes the capsule network with the fuzzified image enhancement for the retina based biometric recognition as it is a highly secure and reliable basis of person identification as it is layered behind the eye and cannot be counterfeited. The method was tested with the dataset of face 95 database and the CASIA-Iris-Thousand, and was found to be 99% accurate with the error rate convergence of 0.3% to .5%


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 769 ◽  
Author(s):  
Ahmed Sedik ◽  
Abdullah M Iliyasu ◽  
Basma Abd El-Rahiem ◽  
Mohammed E. Abdel Samea ◽  
Asmaa Abdel-Raheem ◽  
...  

This generation faces existential threats because of the global assault of the novel Corona virus 2019 (i.e., COVID-19). With more than thirteen million infected and nearly 600000 fatalities in 188 countries/regions, COVID-19 is the worst calamity since the World War II. These misfortunes are traced to various reasons, including late detection of latent or asymptomatic carriers, migration, and inadequate isolation of infected people. This makes detection, containment, and mitigation global priorities to contain exposure via quarantine, lockdowns, work/stay at home, and social distancing that are focused on “flattening the curve”. While medical and healthcare givers are at the frontline in the battle against COVID-19, it is a crusade for all of humanity. Meanwhile, machine and deep learning models have been revolutionary across numerous domains and applications whose potency have been exploited to birth numerous state-of-the-art technologies utilised in disease detection, diagnoses, and treatment. Despite these potentials, machine and, particularly, deep learning models are data sensitive, because their effectiveness depends on availability and reliability of data. The unavailability of such data hinders efforts of engineers and computer scientists to fully contribute to the ongoing assault against COVID-19. Faced with a calamity on one side and absence of reliable data on the other, this study presents two data-augmentation models to enhance learnability of the Convolutional Neural Network (CNN) and the Convolutional Long Short-Term Memory (ConvLSTM)-based deep learning models (DADLMs) and, by doing so, boost the accuracy of COVID-19 detection. Experimental results reveal improvement in terms of accuracy of detection, logarithmic loss, and testing time relative to DLMs devoid of such data augmentation. Furthermore, average increases of 4% to 11% in COVID-19 detection accuracy are reported in favour of the proposed data-augmented deep learning models relative to the machine learning techniques. Therefore, the proposed algorithm is effective in performing a rapid and consistent Corona virus diagnosis that is primarily aimed at assisting clinicians in making accurate identification of the virus.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3549
Author(s):  
Giovanni Diraco ◽  
Alessandro Leone ◽  
Pietro Siciliano

In the smart environments we live today, a great variety of heterogeneous sensors are being increasingly deployed with the aim of providing more and more value-added services. This huge availability of sensor data, together with emerging Artificial Intelligence (AI) methods for Big Data analytics, can yield a wide array of actionable insights to help older adults continue to live independently with minimal support of caregivers. In this regard, there is a growing demand for technological solutions able to monitor human activities and vital signs in order to early detect abnormal conditions, avoiding the caregivers’ daily check of the care recipient. The aim of this study is to compare state-of-the-art machine and deep learning techniques suitable for detecting early changes in human behavior. At this purpose, specific synthetic data are generated, including activities of daily living, home locations in which such activities take place, and vital signs. The achieved results demonstrate the superiority of unsupervised deep-learning techniques over traditional supervised/semi-supervised ones in terms of detection accuracy and lead-time of prediction.


In order to take notes of the speech delivered by the VIPs in the short time short hand language is employed. Mainly there are two shorthand languages namely Pitman and Teeline. An automatic shorthand language recognition system is essential in order to make use of the handheld devices for speedy conversion to the original text. The paper addresses and compares the recognition of the Teeline alphabets using the Machine learning (SVM and KNN) and deep learning (CNN) techniques. The dataset has been prepared using the digital pen and the same is processed and stored using the android application. The prepared dataset is fed to the proposed system and accuracy of recognition is compared. Deep learning technique gave higher accuracy compared to machine learning techniques. MATLAB 2018b platform is used for implementation of the experimental setup.


2019 ◽  
Vol 8 (2) ◽  
pp. 1822-1827 ◽  

This paper presents a computer vision based emotion recognition system for the identification of six basic emotions among Filipino Gamers using deep learning techniques. In particular, the proposed system utilized deep learning through the Inception Network and Long-Short Term Memory (LSTM). The researchers gathered a database for Filipino Facial Expressions consisting of 74 gamers for the training data and 4 gamer subjects for the testing data. The system was able to produce a maximum categorical validation accuracy of .9983 and a test accuracy of .9940 for the six basic emotions using the Filipino database. The cross-database analysis results using the well-known Cohn -Kanade+ database showed that the proposed Inception-LSTM system has accuracy on a par with the current existing systems. The results demonstrated the feasibility of the proposed system and showed sample computations of empathy and engagement based on the six basic emotions as a proof of concept


Sign in / Sign up

Export Citation Format

Share Document