Lipophorin receptors regulate mushroom bodies development and participate in learning, memory, and sleep in flies

2021 ◽  
Author(s):  
Francisca Rojo-Cortes ◽  
Victoria Tapia-Valladares ◽  
Nicolas Fuenzalida-Uribe ◽  
Sergio Hidalgo ◽  
Candy B. Roa ◽  
...  

Drosophila melanogaster Lipophorin Receptors, LpR1 and LpR2, mediate lipid uptake. The orthologs of these receptors in vertebrates, ApoER2 and VLDL-R, bind Reelin, a glycoprotein not present in flies. These receptors are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain. It is currently unknown whether LpRs play similar roles in the Drosophila brain. We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the Mushroom Bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurites. This effect depends on LpRs and Dab, the Drosophila ortholog of the reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin. Overall, these findings demonstrate that LpRs contribute to MB development and function, supporting the existence of LpR-dependent signaling in Drosophila.

2005 ◽  
Vol 25 (23) ◽  
pp. 10533-10542 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Christian Schmedt ◽  
Masato Okada ◽  
Alexander Tarakhovsky

ABSTRACT Regulation of Src family kinase (SFK) activity is indispensable for a functional immune system and embryogenesis. The activity of SFKs is inhibited by the presence of the carboxy-terminal Src kinase (Csk) at the cell membrane. Thus, recruitment of cytosolic Csk to the membrane-associated SFKs is crucial for its regulatory function. Previous studies utilizing in vitro and transgenic models suggested that the Csk-binding protein (Cbp), also known as phosphoprotein associated with glycosphingolipid microdomains (PAG), is the membrane adaptor for Csk. However, loss-of-function genetic evidence to support this notion was lacking. Herein, we demonstrate that the targeted disruption of the cbp gene in mice has no effect on embryogenesis, thymic development, or T-cell functions in vivo. Moreover, recruitment of Csk to the specialized membrane compartment of “lipid rafts” is not impaired by Cbp deficiency. Our results indicate that Cbp is dispensable for the recruitment of Csk to the membrane and that another Csk adaptor, yet to be discovered, compensates for the loss of Cbp.


2017 ◽  
Vol 117 (01) ◽  
pp. 105-115 ◽  
Author(s):  
Yvonne Schaletzki ◽  
Marie-Luise Kromrey ◽  
Susanne Bröderdorf ◽  
Elke Hammer ◽  
Markus Grube ◽  
...  

SummaryThe multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knockdown of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leuk aemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.Supplementary Material to this article is available at www.thrombosis-online.com.


2021 ◽  
Vol 128 (3) ◽  
pp. 433-450
Author(s):  
Nada A. Abumrad ◽  
Ainara G. Cabodevilla ◽  
Dmitri Samovski ◽  
Terri Pietka ◽  
Debapriya Basu ◽  
...  

Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries—unlike liver and adrenals—have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.


2006 ◽  
Vol 291 (4) ◽  
pp. H1900-H1909 ◽  
Author(s):  
Xinsheng Zhu ◽  
Huailong Zhao ◽  
Amanda R. Graveline ◽  
Emmanuel S. Buys ◽  
Ulrich Schmidt ◽  
...  

Innate immune system such as Toll-like receptor 4 (TLR4) represents the first line of defense against infection. In addition to its pivotal role in host immunity, recent studies have suggested that TLR4 may play a broader role in mediating tissue inflammation and cell survival in response to noninfectious injury. We and other investigators have reported that cardiac TLR4 signaling is dynamically modulated in ischemic myocardium and that activation of TLR4 confers a survival benefit in the heart and in isolated cardiomyocytes. However, the signaling pathways leading to these effects are not completely understood. Here, we investigate the role of MyD88, an adaptor protein of TLR4 signaling, and inducible nitric oxide synthase (NOS2) in mediating TLR4-induced cardiomyocyte survival in an in vitro model of apoptosis. Serum deprivation induced a significant increase in the number of apoptotic cardiomyocytes as demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL) assay, nuclear morphology, DNA laddering, and DNA-histone ELISA. Lipopolysaccharide (LPS), a TLR4 agonist, activated TLR4 signaling and led to significant reduction in apoptotic cardiomyocytes and improved cellular function of surviving cardiomyocytes with enhanced Ca2+ transients and cell shortening. We found that both TLR4 and MyD88 are required for the LPS-induced beneficial effects as demonstrated by improved survival and function in wild-type but not in TLR4−/− or MyD88−/− cardiomyocytes. Moreover, genetic deletion or pharmacological inhibition of NOS2 abolished survival and functional rescue of cardiomyocytes treated with LPS. Taken together, these data suggest that TLR4 protects cardiomyocytes from stress-induced injury through MyD88- and NOS2-dependent mechanisms.


2015 ◽  
Vol 9 ◽  
pp. BBI.S33124 ◽  
Author(s):  
Peter R. LoVerso ◽  
Christopher M. Wachter ◽  
Feng Cui

The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2159 ◽  
Author(s):  
Zhaofeng Gao ◽  
Miles Wilkinson

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway—UPF3B—is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons—eukaryotic release factors (eRFs)—suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination—the RNA helicase UPF1—was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation termination and subsequent events, such as ribosome recycling.


2003 ◽  
Vol 23 (24) ◽  
pp. 9293-9302 ◽  
Author(s):  
Lionel Arnaud ◽  
Bryan A. Ballif ◽  
Jonathan A. Cooper

ABSTRACT Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.


2019 ◽  
Vol 51 (9) ◽  
pp. 1-10 ◽  
Author(s):  
Jung Ha Kim ◽  
Kabsun Kim ◽  
Inyoung Kim ◽  
Semun Seong ◽  
Kwang-Il Nam ◽  
...  

Abstract The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.


Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


Sign in / Sign up

Export Citation Format

Share Document