scholarly journals SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification

Author(s):  
Zichen Zhang ◽  
Ye Eun Bae ◽  
Jonathan R. Bradley ◽  
Lang Wu ◽  
Chong Wu

AbstractGenes with moderate to low expression heritability may explain a large proportion of complex trait heritability, but these genes are insufficiently captured in transcriptome-wide association studies (TWAS) partly due to the relatively small available reference datasets for developing expression genetic prediction models to capture the moderate to low genetically regulated components of gene expression. Here, we introduce a new method, Summary-level Unified Method for Modeling Integrated Transcriptome (SUMMIT), to improve the expression prediction model accuracy and the power of TWAS by using a large expression quantitative trait loci (eQTL) summary-level dataset. We applied SUMMIT to the eQTL summary-level data provided by the eQTLGen consortium, which involve 31,684 blood samples from 37 cohorts. Through simulation studies and analyses of GWAS summary statistics for 24 complex traits, we show that SUMMIT substantially improves the accuracy of expression prediction in blood, successfully builds expression prediction models for genes with low expression heritability, and achieves higher statistical power than several benchmark methods. In the end, we conducted a case study of COVID-19 severity with SUMMIT and identified 11 likely causal genes associated with COVID-19 severity.

2021 ◽  
Author(s):  
Jenna Hershberger ◽  
Ryokei Tanaka ◽  
Joshua C. Wood ◽  
Nicholas Kaczmar ◽  
Di Wu ◽  
...  

Sweet corn is consistently one of the most highly consumed vegetables in the U.S., providing a valuable opportunity to increase nutrient intake through biofortification. Significant variation for carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels is present in temperate sweet corn germplasm, yet previous genome-wide association studies (GWAS) of these traits have been limited by low statistical power and mapping resolution. Here, we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for 39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS detected significant associations for four causal genes, β-carotene hydroxylase (crtRB1), lycopene epsilon cyclase (lcyE), γ-tocopherol methyltransferase (vte4), and homogentisate geranylgeranyltransferase (hggt1) on a transcriptome-wide level. Pathway-level analysis revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl erythritol synthase2 (dmes2), cytidine methyl kinase1 (cmk1), and geranylgeranyl hydrogenase1 (ggh1), of which, dmes2, cmk1, and ggh1 have not previously been identified through maize association studies. Evaluation of prediction models incorporating genome-wide markers and transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both genomic and transcriptomic data over solely genomic data, but both transcriptome- and genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most traits. Altogether, this study represents an important step towards understanding the role of regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Rauner ◽  
Ines Foessl ◽  
Melissa M. Formosa ◽  
Erika Kague ◽  
Vid Prijatelj ◽  
...  

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits (“endophenotypes”), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


Author(s):  
Elle M Weeks ◽  
Jacob C Ulirsch ◽  
Nathan Y Cheng ◽  
Brian L Trippe ◽  
Rebecca S Fine ◽  
...  

Genome-wide association studies (GWAS) are a valuable tool for understanding the biology of complex traits, but the associations found rarely point directly to causal genes. Here, we introduce a new method to identify the causal genes by integrating GWAS summary statistics with gene expression, biological pathway, and predicted protein-protein interaction data. We further propose an approach that effectively leverages both polygenic and locus-specific genetic signals by combining results across multiple gene prioritization methods, increasing confidence in prioritized genes. Using a large set of gold standard genes to evaluate our approach, we prioritize 8,402 unique gene-trait pairs with greater than 75% estimated precision across 113 complex traits and diseases, including known genes such as SORT1 for LDL cholesterol, SMIM1 for red blood cell count, and DRD2 for schizophrenia, as well as novel genes such as TTC39B for cholelithiasis. Our results demonstrate that a polygenic approach is a powerful tool for gene prioritization and, in combination with locus-specific signal, improves upon existing methods.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 919-929
Author(s):  
Daniel A. Skelly ◽  
Narayanan Raghupathy ◽  
Raymond F. Robledo ◽  
Joel H. Graber ◽  
Elissa J. Chesler

Systems genetic analysis of complex traits involves the integrated analysis of genetic, genomic, and disease-related measures. However, these data are often collected separately across multiple study populations, rendering direct correlation of molecular features to complex traits impossible. Recent transcriptome-wide association studies (TWAS) have harnessed gene expression quantitative trait loci (eQTL) to associate unmeasured gene expression with a complex trait in genotyped individuals, but this approach relies primarily on strong eQTL. We propose a simple and powerful alternative strategy for correlating independently obtained sets of complex traits and molecular features. In contrast to TWAS, our approach gains precision by correlating complex traits through a common set of continuous phenotypes instead of genetic predictors, and can identify transcript–trait correlations for which the regulation is not genetic. In our approach, a set of multiple quantitative “reference” traits is measured across all individuals, while measures of the complex trait of interest and transcriptional profiles are obtained in disjoint subsamples. A conventional multivariate statistical method, canonical correlation analysis, is used to relate the reference traits and traits of interest to identify gene expression correlates. We evaluate power and sample size requirements of this methodology, as well as performance relative to other methods, via extensive simulation and analysis of a behavioral genetics experiment in 258 Diversity Outbred mice involving two independent sets of anxiety-related behaviors and hippocampal gene expression. After splitting the data set and hiding one set of anxiety-related traits in half the samples, we identified transcripts correlated with the hidden traits using the other set of anxiety-related traits and exploiting the highest canonical correlation (R = 0.69) between the trait data sets. We demonstrate that this approach outperforms TWAS in identifying associated transcripts. Together, these results demonstrate the validity, reliability, and power of reference trait analysis for identifying relations between complex traits and their molecular substrates.


2020 ◽  
Author(s):  
Jiawen Chen ◽  
Jing You ◽  
Zijie Zhao ◽  
Zheng Ni ◽  
Kunling Huang ◽  
...  

AbstractPolygenic risk scores (PRS) derived from summary statistics of genome-wide association studies (GWAS) have enjoyed great popularity in human genetics research. Applied to population cohorts, PRS can effectively stratify individuals by risk group and has promising applications in early diagnosis and clinical intervention. However, our understanding of within-family polygenic risk is incomplete, in part because the small samples per family significantly limits power. Here, to address this challenge, we introduce ORIGAMI, a computational framework that uses parental genotype data to simulate offspring genomes. ORIGAMI uses state-of-the-art genetic maps to simulate realistic recombination events on phased parental genomes and allows quantifying the prospective PRS variability within each family. We quantify and showcase the substantially reduced yet highly heterogeneous PRS variation within families for numerous complex traits. Further, we incorporate within-family PRS variability to improve polygenic transmission disequilibrium test (pTDT). Through simulations, we demonstrate that modeling within-family risk substantially improves the statistical power of pTDT. Applied to 7,805 trios of autism spectrum disorder (ASD) probands and healthy parents, we successfully replicated previously reported over-transmission of ASD, educational attainment, and schizophrenia risk, and identified multiple novel traits with significant transmission disequilibrium. These results provided novel etiologic insights into the shared genetic basis of various complex traits and ASD.


2019 ◽  
Author(s):  
Yuhua Zhang ◽  
Corbin Quick ◽  
Ketian Yu ◽  
Alvaro Barbeira ◽  
Francesca Luca ◽  
...  

AbstractTranscriptome-wide association studies (TWAS), an integrative framework using expression quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged as a promising method to investigate the biological mechanisms underlying associations between genotypes and complex traits. However, challenges remain in interpreting TWAS results, especially regarding their causality implications. In this paper, we describe a new computational framework, probabilistic TWAS (PTWAS), to detect associations and investigate causal relationships between gene expression and complex traits. We use established concepts and principles from instrumental variables (IV) analysis to delineate and address the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect TWAS associations than existing methods. Additionally, PTWAS provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal effects of gene expression on complex traits. These features make PTWAS uniquely suited for in-depth investigations of the biological mechanisms that contribute to complex trait variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze 114 complex traits using GWAS summary statistics from several large-scale projects, including the UK Biobank. Our analysis reveals an abundance of genes with strong evidence of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and tissue-relevance of these effects across complex traits. We distribute software and eQTL annotations to enable users performing rigorous TWAS analysis by leveraging the full potentials of the latest GTEx multi-tissue eQTL data.


2015 ◽  
Author(s):  
Guo-Bo Chen ◽  
Sang Hong Lee ◽  
Matthew R Robinson ◽  
Maciej Trzaskowski ◽  
Zhi-Xiang Zhu ◽  
...  

Genome-wide association studies (GWASs) have been successful in discovering replicable SNP-trait associations for many quantitative traits and common diseases in humans. Typically the effect sizes of SNP alleles are very small and this has led to large genome-wide association meta-analyses (GWAMA) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study we propose a new set of metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We proposed a pair of methods in examining the concordance between demographic information and summary statistics. In method I, we use the population genetics Fststatistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. In method II, we conduct principal component analysis based on reported allele frequencies, and is able to recover the ancestral information for each cohort. In addition, we propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. Finally, to quantify unknown sample overlap across all pairs of cohorts we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.


2018 ◽  
Author(s):  
A.G. Allegrini ◽  
S. Selzam ◽  
K. Rimfeld ◽  
S. von Stumm ◽  
J.B. Pingault ◽  
...  

AbstractRecent advances in genomics are producing powerful DNA predictors of complex traits, especially cognitive abilities. Here, we leveraged summary statistics from the most recent genome-wide association studies of intelligence and educational attainment to build prediction models of general cognitive ability and educational achievement. To this end, we compared the performances of multi-trait genomic and polygenic scoring methods. In a representative UK sample of 7,026 children at age 12 and 16, we show that we can now predict up to 11 percent of the variance in intelligence and 16 percent in educational achievement. We also show that predictive power increases from age 12 to age 16 and that genomic predictions do not differ for girls and boys. Multivariate genomic methods were effective in boosting predictive power and, even though prediction accuracy varied across polygenic scores approaches, results were similar using different multivariate and polygenic score methods. Polygenic scores for educational attainment and intelligence are the most powerful predictors in the behavioural sciences and exceed predictions that can be made from parental phenotypes such as educational attainment and occupational status.


Sign in / Sign up

Export Citation Format

Share Document