scholarly journals Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis

2019 ◽  
Author(s):  
Yuhua Zhang ◽  
Corbin Quick ◽  
Ketian Yu ◽  
Alvaro Barbeira ◽  
Francesca Luca ◽  
...  

AbstractTranscriptome-wide association studies (TWAS), an integrative framework using expression quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged as a promising method to investigate the biological mechanisms underlying associations between genotypes and complex traits. However, challenges remain in interpreting TWAS results, especially regarding their causality implications. In this paper, we describe a new computational framework, probabilistic TWAS (PTWAS), to detect associations and investigate causal relationships between gene expression and complex traits. We use established concepts and principles from instrumental variables (IV) analysis to delineate and address the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect TWAS associations than existing methods. Additionally, PTWAS provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal effects of gene expression on complex traits. These features make PTWAS uniquely suited for in-depth investigations of the biological mechanisms that contribute to complex trait variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze 114 complex traits using GWAS summary statistics from several large-scale projects, including the UK Biobank. Our analysis reveals an abundance of genes with strong evidence of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and tissue-relevance of these effects across complex traits. We distribute software and eQTL annotations to enable users performing rigorous TWAS analysis by leveraging the full potentials of the latest GTEx multi-tissue eQTL data.

Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 919-929
Author(s):  
Daniel A. Skelly ◽  
Narayanan Raghupathy ◽  
Raymond F. Robledo ◽  
Joel H. Graber ◽  
Elissa J. Chesler

Systems genetic analysis of complex traits involves the integrated analysis of genetic, genomic, and disease-related measures. However, these data are often collected separately across multiple study populations, rendering direct correlation of molecular features to complex traits impossible. Recent transcriptome-wide association studies (TWAS) have harnessed gene expression quantitative trait loci (eQTL) to associate unmeasured gene expression with a complex trait in genotyped individuals, but this approach relies primarily on strong eQTL. We propose a simple and powerful alternative strategy for correlating independently obtained sets of complex traits and molecular features. In contrast to TWAS, our approach gains precision by correlating complex traits through a common set of continuous phenotypes instead of genetic predictors, and can identify transcript–trait correlations for which the regulation is not genetic. In our approach, a set of multiple quantitative “reference” traits is measured across all individuals, while measures of the complex trait of interest and transcriptional profiles are obtained in disjoint subsamples. A conventional multivariate statistical method, canonical correlation analysis, is used to relate the reference traits and traits of interest to identify gene expression correlates. We evaluate power and sample size requirements of this methodology, as well as performance relative to other methods, via extensive simulation and analysis of a behavioral genetics experiment in 258 Diversity Outbred mice involving two independent sets of anxiety-related behaviors and hippocampal gene expression. After splitting the data set and hiding one set of anxiety-related traits in half the samples, we identified transcripts correlated with the hidden traits using the other set of anxiety-related traits and exploiting the highest canonical correlation (R = 0.69) between the trait data sets. We demonstrate that this approach outperforms TWAS in identifying associated transcripts. Together, these results demonstrate the validity, reliability, and power of reference trait analysis for identifying relations between complex traits and their molecular substrates.


2020 ◽  
Author(s):  
Helian Feng ◽  
Nicholas Mancuso ◽  
Alexander Gusev ◽  
Arunabha Majumdar ◽  
Megan Major ◽  
...  

AbstractTranscriptome-wide association studies (TWAS) test the association between traits and genetically predicted gene expression levels. The power of a TWAS depends in part on the strength of the correlation between a genetic predictor of gene expression and the causally relevant gene expression values. Consequently, TWAS power can be low when expression quantitative trait locus (eQTL) data used to train the genetic predictors have small sample sizes, or when data from causally relevant tissues are not available. Here, we propose to address these issues by integrating multiple tissues in the TWAS using sparse canonical correlation analysis (sCCA). We show that sCCA-TWAS combined with single-tissue TWAS using an aggregate Cauchy association test (ACAT) outperforms traditional single-tissue TWAS. In empirically motivated simulations, the sCCA+ACAT approach yielded the highest power to detect a gene associated with phenotype, even when expression in the causal tissue was not directly measured, while controlling the Type I error when there is no association between gene expression and phenotype. For example, when gene expression explains 2% of the variability in outcome, and the GWAS sample size is 20,000, the average power difference between the ACAT combined test of sCCA features and single-tissue, versus single-tissue combined with Generalized Berk-Jones (GBJ) method, single-tissue combined with S-MultiXcan or summarizing cross-tissue expression patterns using Principal Component Analysis (PCA) approaches was 5%, 8%, and 38%, respectively. The gain in power is likely due to sCCA cross-tissue features being more likely to be detectably heritable. When applied to publicly available summary statistics from 10 complex traits, the sCCA+ACAT test was able to increase the number of testable genes and identify on average an additional 400 additional gene-trait associations that single-trait TWAS missed. Our results suggest that aggregating eQTL data across multiple tissues using sCCA can improve the sensitivity of TWAS while controlling for the false positive rate.Author summaryTranscriptome-wide association studies (TWAS) can improve the statistical power of genetic association studies by leveraging the relationship between genetically predicted transcript expression levels and an outcome. We propose a new TWAS pipeline that integrates data on the genetic regulation of expression levels across multiple tissues. We generate cross-tissue expression features using sparse canonical correlation analysis and then combine evidence for expression-outcome association across cross- and single-tissue features using the aggregate Cauchy association test. We show that this approach has substantially higher power than traditional single-tissue TWAS methods. Application of these methods to publicly available summary statistics for ten complex traits also identifies associations missed by single-tissue methods.


2019 ◽  
Author(s):  
Wen Zhang ◽  
Georgios Voloudakis ◽  
Veera M. Rajagopal ◽  
Ben Reahead ◽  
Joel T. Dudley ◽  
...  

AbstractTranscriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we improve the accuracy of transcriptome prediction and the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge to biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify known and novel compounds that mimic or reverse trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.


2018 ◽  
Author(s):  
Karl A. G. Kremling ◽  
Christine H. Diepenbrock ◽  
Michael A. Gore ◽  
Edward S. Buckler ◽  
Nonoy B. Bandillo

AbstractModern improvement of complex traits in agricultural species relies on successful associations of heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been based on easily measurable genetic markers. The recent advent of new technologies allows assaying and quantifying biological intermediates (hereafter endophenotypes) which are now readily measurable at a large scale across diverse individuals. The potential of using endophenotypes for dissecting traits of interest remains underexplored in plants. The work presented here illustrated the utility of a large-scale (299 genotype and 7 tissue) gene expression resource to dissect traits across multiple levels of biological organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies (TWAS), we revealed that about half of the functional variation for agronomic and seed quality (carotenoid, tocochromanol) traits is regulatory. Comparing the efficacy of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase the power to detect known genes and aid in prioritizing likely causal genes. Using a variance partitioning approach in the independent maize Nested Association Mapping (NAM) population, we also showed that the most strongly associated genes identified by combining GWAS and TWAS explain more heritable variance for a majority of traits, beating the heritability captured by the random genes and the genes identified by GWAS or TWAS alone. This improves not only the ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory variation in plants.Author summaryWe examined the ability to associate variability in gene expression directly with terminal phenotypes of interest, as a supplement linking genotype to phenotype. We found that transcriptome-wide association studies (TWAS) are a useful accessory to genome-wide association studies (GWAS). In a combined test with GWAS results, TWAS improves the capacity to re-detect genes known to underlie quantitative trait loci for kernel and agronomic phenotypes. This improves not only the capacity to link genes to phenotypes, but also illustrates the widespread importance of regulation for phenotype.


2021 ◽  
Author(s):  
Jian Yang ◽  
Ting Qi ◽  
Yang Wu ◽  
Futao Zhang ◽  
Jian Zeng

Abstract Most genetic variants identified from genome-wide association studies (GWAS) in humans are noncoding, indicating their role in gene regulation. Prior studies have shown considerable links of GWAS signals to expression quantitative trait loci (eQTLs), but the links to other genetic regulatory mechanisms such as splicing QTLs (sQTLs) are underexplored. Here, we introduce a transcript-based sQTL method (named THISTLE) with improved power for sQTL detection. Applying THISTLE along with LeafCutter, an event-based sQTL method, to brain transcriptomic data (n=1,073), we identified 7,491 genes with sQTLs with P<5×10^(-8) (the largest brain cis-sQTL collection to date), ~68% of which were distinct from eQTLs. Integrating the sQTL data into GWAS for ten brain-related complex traits (including diseases), we identified 107 genes associated with the traits through the sQTLs, ~68% of which could not be discovered using eQTL data. Our study demonstrates the distinctive role of most sQTLs in genetic regulation of transcription and complex trait variation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evan K. Irving-Pease ◽  
Rasa Muktupavela ◽  
Michael Dannemann ◽  
Fernando Racimo

Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.


2021 ◽  
Author(s):  
Abhay Hukku ◽  
Matthew G Sampson ◽  
Francesca Luca ◽  
Roger Pigue-Regi ◽  
Xiaoquan Wen

Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic association data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic association evidence and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the same molecular and complex trait data, the inference results can be markedly different. This paper systematically investigates the inferential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of 4 complex trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent results may suggest an interesting biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second class can be understood and effectively reconciled. To this end, we propose a novel approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization analysis improves specificity and sensitivity for implicating biological-relevant genes.


2021 ◽  
Author(s):  
Marie C Sadler ◽  
Chiara Marie Paula Auwerx ◽  
Eleonora Porcu ◽  
Zoltan Kutalik

Background: High-dimensional omics datasets provide valuable resources to determine the causal role of molecular traits in mediating the path from genotype to phenotype. Making use of quantitative trait loci (QTL) and genome-wide association studies (GWASs) summary statistics, we developed a multivariable Mendelian randomization (MVMR) framework to quantify the connectivity between three omics layers (DNA methylome (DNAm), transcriptome and proteome) and their cascading causal impact on complex traits and diseases. Results: Evaluating 50 complex traits, we found that on average 37.8% (95% CI: [36.0%-39.5%]) of DNAm-to-trait effects were mediated through transcripts in the cis-region, while only 15.8% (95% CI: [11.9%-19.6%]) are mediated through proteins in cis. DNAm sites typically regulate multiple transcripts, and while found to predominantly decrease gene expression, this was only the case for 53.4% across ~47,000 significant DNAm-transcript pairs. The average mediation proportion for transcript-to-trait effects through proteins (encoded for by the assessed transcript or located in trans) was estimated to be 5.27% (95%CI: [4.11%-6.43%]). Notable differences in the transcript and protein QTL architectures were detected with only 22% of protein levels being causally driven by their corresponding transcript levels. Several regulatory mechanisms were hypothesized including an example where cg10385390 (chr1:8,022,505) increases the risk of irritable bowel disease by reducing PARK7 transcript and protein expression. Conclusions: The proposed integrative framework identified putative causal chains through omics layers providing a powerful tool to map GWAS signals. Quantification of causal effects between successive layers indicated that molecular mechanisms can be more complex than what the central dogma of biology would suggest.


2018 ◽  
Author(s):  
Daniel A. Skelly ◽  
Narayanan Raghupathy ◽  
Raymond F. Robledo ◽  
Joel H. Graber ◽  
Elissa J. Chesler

ABSTRACTSystems genetic analysis of complex traits involves the integrated analysis of genetic, genomic, and disease related measures. However, these data are often collected separately across multiple study populations, rendering direct correlation of molecular features to complex traits impossible. Recent transcriptome-wide association studies (TWAS) have harnessed gene expression quantitative trait loci (eQTL) to associate unmeasured gene expression with a complex trait in genotyped individuals, but this approach relies primarily on strong eQTLs. We propose a simple and powerful alternative strategy for correlating independently obtained sets of complex traits and molecular features. In contrast to TWAS, our approach gains precision by correlating complex traits through a common set of continuous phenotypes instead of genetic predictors, and can identify transcript-trait correlations for which the regulation is not genetic. In our approach, a set of multiple quantitative “reference” traits is measured across all individuals, while measures of the complex trait of interest and transcriptional profiles are obtained in disjoint sub-samples. A conventional multivariate statistical method, canonical correlation analysis, is used to relate the reference traits and traits of interest in order to identify gene expression correlates. We evaluate power and sample size requirements of this methodology, as well as performance relative to other methods, via extensive simulation and analysis of a behavioral genetics experiment in 258 Diversity Outbred mice involving two independent sets of anxiety-related behaviors and hippocampal gene expression. After splitting the dataset and hiding one set of anxiety-related traits in half the samples, we identified transcripts correlated with the hidden traits using the other set of anxiety-related traits and exploiting the highest canonical correlation (R = 0.69) between the trait datasets. We demonstrate that this approach outperforms TWAS in identifying associated transcripts. Together, these results demonstrate the validity, reliability, and power of the reference trait method for identifying relations between complex traits and their molecular substrates.AUTHOR SUMMARYSystems genetics exploits natural genetic variation and high-throughput measurements of molecular intermediates to dissect genetic contributions to complex traits. An important goal of this strategy is to correlate molecular features, such as transcript or protein abundance, with complex traits. For practical, technical, or financial reasons, it may be impossible to measure complex traits and molecular intermediates on the same individuals. Instead, in some cases these two sets of traits may be measured on independent cohorts. We outline a method, reference trait analysis, for identifying molecular correlates of complex traits in this scenario. We show that our method powerfully identifies complex trait correlates across a wide range of parameters that are biologically plausible and experimentally practical. Furthermore, we show that reference trait analysis can identify transcripts correlated to a complex trait more accurately than approaches such as TWAS that use genetic variation to predict gene expression. Reference trait analysis will contribute to furthering our understanding of variation in complex traits by identifying molecular correlates of complex traits that are measured in different individuals.


2015 ◽  
Author(s):  
Alexander Gusev ◽  
Arthur Ko ◽  
Huwenbo Shi ◽  
Gaurav Bhatia ◽  
Wonil Chung ◽  
...  

Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. In this work we introduce a powerful strategy that integrates gene expression measurements with large-scale genome-wide association data to identify genes whose cis-regulated expression is associated to complex traits. We use a relatively small reference panel of individuals for which both genetic variation and gene expression have been measured to impute gene expression into large cohorts of individuals and identify expression-trait associations. We extend our methods to allow for indirect imputation of the expression-trait association from summary association statistics of large-scale GWAS1-3. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We then imputed gene expression into GWAS data from over 900,000 phenotype measurements4-6 to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes were associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Overall our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits.


Sign in / Sign up

Export Citation Format

Share Document