scholarly journals Impact of Population Mixing Between a Vaccinated Majority and Unvaccinated Minority on Disease Dynamics. Implications for SARS-CoV-2

Author(s):  
Ashleigh Tuite ◽  
Afia Amoako ◽  
David Fisman

Background: The speed of vaccine development has been a singular achievement during the SARS-CoV-2 pandemic. However, anti-vaccination movements and disinformation efforts have resulted in suboptimal uptake of available vaccines. Vaccine opponents often frame their opposition in terms of the rights of the unvaccinated. Our objective was to explore the impact of mixing of vaccinated and unvaccinated populations on risk among vaccinated individuals. Methods: We constructed a simple Susceptible-Infectious-Recovered (SIR) compartmental model of a respiratory infectious disease with two connected sub-populations: vaccinated individuals and unvaccinated individuals (Figure 1). We modeled the non-random mixing of these two groups using a matrix approach with a mixing constant varied to simulate a spectrum of patterns ranging from random mixing to complete assortativity. We evaluated the dynamics of an epidemic within each subgroup, and in the population as a whole, and also evaluated the contact-frequency-adjusted contribution of unvaccinated individuals to risk among the vaccinated. Results: As expected, the relative risk of infection was markedly higher among unvaccinated individuals than among vaccinated individuals. However, the contact-adjusted contribution of unvaccinated individuals to infection risk during the epidemic was disproportionate with unvaccinated individuals contributing to infection risk among the vaccinated at a rate up to 6.4 times higher than would have been expected based on contact numbers alone in the base case. As assortativity increased the final attack rate decreased among vaccinated individuals, but the contact-adjusted contribution to risk among vaccinated individuals derived from contact with unvaccinated individuals increased. Interpretation: While risk associated with avoiding vaccination during a virulent pandemic accrues chiefly to the unvaccinated, the choices of these individuals are likely to impact the health and safety of vaccinated individuals in a manner disproportionate to the fraction of unvaccinated individuals in the population.

2021 ◽  
Author(s):  
Austin Nam ◽  
Raphael Ximenes ◽  
Man Wah Yeung ◽  
Sharmistha Mishra ◽  
Jianhong Wu ◽  
...  

AbstractBackgroundDual dose SARS-CoV-2 vaccines demonstrate high efficacy and will be critical in public health efforts to mitigate the COVID-19 pandemic and its health consequences; however, many jurisdictions face very constrained vaccine supply. We examined the impacts of extending the interval between two doses of mRNA vaccines in Canada in order to inform deliberations of Canada’s National Advisory Committee on Immunization.MethodsWe developed an age-stratified, deterministic, compartmental model of SARS-CoV-2 transmission and disease to reproduce the epidemiologic features of the epidemic in Canada. Simulated vaccination comprised mRNA vaccines with explicit examination of effectiveness against disease (67% [first dose], 94% [second dose]), hospitalization (80% [first dose], 96% [second dose]), and death (85% [first dose], 96% [second dose]) in adults aged 20 years and older. Effectiveness against infection was assumed to be 90% relative to the effectiveness against disease. We used a 6-week mRNA dose interval as our base case (consistent with early program rollout across Canadian and international jurisdictions) and compared extended intervals of 12 weeks, 16 weeks, and 24 weeks. We began vaccinations on January 1, 2021 and simulated a third wave beginning on April 1, 2021.ResultsExtending mRNA dose intervals were projected to result in 12.1-18.9% fewer symptomatic cases, 9.5-13.5% fewer hospitalizations, and 7.5-9.7% fewer deaths in the population over a 12-month time horizon. The largest reductions in hospitalizations and deaths were observed in the longest interval of 24 weeks, though benefits were diminishing as intervals extended. Benefits of extended intervals stemmed largely from the ability to accelerate coverage in individuals aged 20-74 years as older individuals were already prioritized for early vaccination. Conditions under which mRNA dose extensions led to worse outcomes included: first-dose effectiveness < 65% against death; or protection following first dose waning to 0% by month three before the scheduled 2nd dose at 24-weeks. Probabilistic simulations from a range of likely vaccine effectiveness values did not result in worse outcomes with extended intervals.ConclusionUnder real-world effectiveness conditions, our results support a strategy of extending mRNA dose intervals across all age groups to minimize symptomatic cases, hospitalizations, and deaths while vaccine supply is constrained.


Author(s):  
Seyed M Moghadas ◽  
Thomas N Vilches ◽  
Kevin Zhang ◽  
Chad R Wells ◽  
Affan Shoukat ◽  
...  

Abstract Background Global vaccine development efforts have been accelerated in response to the devastating COVID-19 pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States (US). Methods We developed an agent-based model of SARS-CoV-2 transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, while children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection, and specified 10% pre-existing population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current non-pharmaceutical interventions in the US. Results Vaccination reduced the overall attack rate to 4.6% (95% CrI: 4.3% - 5.0%) from 9.0% (95% CrI: 8.4% - 9.4%) without vaccination, over 300 days. The highest relative reduction (54-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-ICU hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3% - 66.7%), 65.6% (95% CrI: 62.2% - 68.6%), and 69.3% (95% CrI: 65.5% - 73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with non-pharmaceutical interventions is essential to achieve this impact.


Author(s):  
Seyed M. Moghadas ◽  
Thomas N. Vilches ◽  
Kevin Zhang ◽  
Chad R. Wells ◽  
Affan Shoukat ◽  
...  

AbstractBackgroundGlobal vaccine development efforts have been accelerated in response to the devastating COVID-19 pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States (US).MethodsWe developed an agent-based model of SARS-CoV-2 transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, while children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection, and specified 10% pre-existing population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current non-pharmaceutical interventions in the US.ResultsVaccination reduced the overall attack rate to 4.6% (95% CrI: 4.3% - 5.0%) from 9.0% (95% CrI: 8.4% - 9.4%) without vaccination, over 300 days. The highest relative reduction (54-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-ICU hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3% - 66.7%), 65.6% (95% CrI: 62.2% - 68.6%), and 69.3% (95% CrI: 65.5% - 73.1%), respectively, across the same period.ConclusionsOur results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with non-pharmaceutical interventions is essential to achieve this impact.Key pointsVaccination with a 95% efficacy against disease could substantially mitigate future attack rates, hospitalizations, and deaths, even if only adults are vaccinated. Non-pharmaceutical interventions remain an important part of outbreak response as vaccines are distributed over time.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 519-532 ◽  
Author(s):  
Mark Crisp ◽  
Richard Riehle

Polyaminopolyamide-epichlorohydrin (PAE) resins are the predominant commercial products used to manufacture wet-strengthened paper products for grades requiring wet-strength permanence. Since their development in the late 1950s, the first generation (G1) resins have proven to be one of the most cost-effective technologies available to provide wet strength to paper. Throughout the past three decades, regulatory directives and sustainability initiatives from various organizations have driven the development of cleaner and safer PAE resins and paper products. Early efforts in this area focused on improving worker safety and reducing the impact of PAE resins on the environment. These efforts led to the development of resins containing significantly reduced levels of 1,3-dichloro-2-propanol (1,3-DCP) and 3-monochloropropane-1,2-diol (3-MCPD), potentially carcinogenic byproducts formed during the manufacturing process of PAE resins. As the levels of these byproducts decreased, the environmental, health, and safety (EH&S) profile of PAE resins and paper products improved. Recent initiatives from major retailers are focusing on product ingredient transparency and quality, thus encouraging the development of safer product formulations while maintaining performance. PAE resin research over the past 20 years has been directed toward regulatory requirements to improve consumer safety and minimize exposure to potentially carcinogenic materials found in various paper products. One of the best known regulatory requirements is the recommendations of the German Federal Institute for Risk Assessment (BfR), which defines the levels of 1,3-DCP and 3-MCPD that can be extracted by water from various food contact grades of paper. These criteria led to the development of third generation (G3) products that contain very low levels of 1,3-DCP (typically <10 parts per million in the as-received/delivered resin). This paper outlines the PAE resin chemical contributors to adsorbable organic halogens and 3-MCPD in paper and provides recommendations for the use of each PAE resin product generation (G1, G1.5, G2, G2.5, and G3).


Author(s):  
Mark Blaxill ◽  
Toby Rogers ◽  
Cynthia Nevison

AbstractThe cost of ASD in the U.S. is estimated using a forecast model that for the first time accounts for the true historical increase in ASD. Model inputs include ASD prevalence, census population projections, six cost categories, ten age brackets, inflation projections, and three future prevalence scenarios. Future ASD costs increase dramatically: total base-case costs of $223 (175–271) billion/year are estimated in 2020; $589 billion/year in 2030, $1.36 trillion/year in 2040, and $5.54 (4.29–6.78) trillion/year by 2060, with substantial potential savings through ASD prevention. Rising prevalence, the shift from child to adult-dominated costs, the transfer of costs from parents onto government, and the soaring total costs raise pressing policy questions and demand an urgent focus on prevention strategies.


2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


Author(s):  
Garrett D. Brown

Women make up the large majority of workers in global supply chains, especially factories in the apparel supply chain. These workers face significant inequalities in wages, workplace hazards, and a special burden of gender-based violence and harassment. These “normal” conditions have been compounded by the impact of the COVID-19 pandemic, which has exacerbated long-standing structural inequities. Decades of well-financed “corporate social responsibility” programs have failed because they do not address the underlying causes of illegal and abusive working conditions. New initiatives in the past half-decade offer promise in putting the needs and rights of workers front and center. Occupational health and safety professionals can assist in the global effort to improve working and social conditions, and respect for the rights and dignity of women workers, through advocacy and action on the job, in their professional associations, and in society at large.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 96
Author(s):  
Paul Mathew ◽  
Lino Sanchez ◽  
Sang Hoon Lee ◽  
Travis Walter

Increasing concern over higher frequency extreme weather events is driving a push towards a more resilient built environment. In recent years there has been growing interest in understanding how to evaluate, measure, and improve building energy resilience, i.e., the ability of a building to provide energy-related services in the event of a local or regional power outage. In addition to human health and safety, many stakeholders are keenly interested in the ability of a building to allow continuity of operations and minimize business disruption. Office buildings are subject to significant economic losses when building operations are disrupted due to a power outage. We propose “occupant hours lost” (OHL) as a means to measure the business productivity lost as the result of a power outage in office buildings. OHL is determined based on indoor conditions in each space for each hour during a power outage, and then aggregated spatially and temporally to determine the whole building OHL. We used quasi-Monte Carlo parametric energy simulations to demonstrate how the OHL metric varies due to different building characteristics across different climate zones and seasons. The simulation dataset was then used to develop simple regression models for assessing the impact of ten key building characteristics on OHL. The most impactful were window-to-wall ratio and window characteristics. The regression models show promise as a simple means to assess and screen for resilience using basic building characteristics, especially for non-critical facilities where it may not be viable to conduct detailed engineering analysis.


Sign in / Sign up

Export Citation Format

Share Document