scholarly journals A salvaging strategy enables stable metabolite provisioning among free-living bacteria

2021 ◽  
Author(s):  
Sebastian Gude ◽  
Gordon J Pherribo ◽  
Michiko E Taga

All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently 'leaky', the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of 'recycling and reusing', can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to non-productive population members, yet salvagers are strongly protected from overexploitation due to partial metabolite privatization. We also describe a previously unnoted benefit of precursor salvaging, namely the removal of the non-functional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations.

2020 ◽  
Vol 133 (3) ◽  
pp. 758-764
Author(s):  
Eung Koo Yeon ◽  
Young Dae Cho ◽  
Dong Hyun Yoo ◽  
Su Hwan Lee ◽  
Hyun-Seung Kang ◽  
...  

OBJECTIVEThe authors conducted a study to ascertain the long-term durability of coiled aneurysms completely occluded at 36 months’ follow-up given the potential for delayed recanalization.METHODSIn this retrospective review, the authors examined 299 patients with 339 aneurysms, all shown to be completely occluded at 36 months on follow-up images obtained between 2011 and 2013. Medical records and radiological data acquired during the extended monitoring period (mean 74.3 ± 22.5 months) were retrieved, and the authors analyzed the incidence of (including mean annual risk) and risk factors for delayed recanalization.RESULTSA total of 5 coiled aneurysms (1.5%) occluded completely at 36 months showed recanalization (0.46% per aneurysm-year) during the long-term surveillance period (1081.9 aneurysm-years), 2 surfacing within 60 months and 3 developing thereafter. Four showed minor recanalization, with only one instance of major recanalization. The latter involved the posterior communicating artery as an apparent de novo lesion, arising at the neck of a firmly coiled sac, and was unrelated to coil compaction or growth. Additional embolization was undertaken. In a multivariate analysis, a second embolization for a recurrent aneurysm (HR = 22.088, p = 0.003) independently correlated with delayed recanalization.CONCLUSIONSAlmost all coiled aneurysms (98.5%) showing complete occlusion at 36 months postembolization proved to be stable during extended observation. However, recurrent aneurysms were predisposed to delayed recanalization. Given the low probability yet seriousness of delayed recanalization and the possibility of de novo aneurysm formation, careful monitoring may be still considered in this setting but at less frequent intervals beyond 36 months.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles Bou-Nader ◽  
Frederick W. Stull ◽  
Ludovic Pecqueur ◽  
Philippe Simon ◽  
Vincent Guérineau ◽  
...  

AbstractFolate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Hoon Lee ◽  
Yeon Suk Kim ◽  
Eui Joo Kim ◽  
Hee Seung Lee ◽  
Jeong Youp Park ◽  
...  

AbstractChronic pancreatitis (CP) related main pancreatic duct (MPD) stricture has been a challenge for endoscopists. Fully covered self-expandable metal stents (FC-SEMS) has been tried in CP patients, but the efficacy and safety are still controversial. Thus, we aim to compare the long-term clinical efficacy of FC-SEMS vs. plastic stent placement in persistent MPD strictures secondary to CP. Between 2007 and 2018, 80 chronic pancreatitis patients (58 males, median age 49 years), who underwent endoscopic placement of FC-SEMS (n = 26) and plastic stent (n = 54) for persistent MPD strictures after at least 3 months of initial single plastic stenting, were retrospectively analyzed during a median follow-up duration of 33.7 months. As a result, MPD stricture resolution rate was statistically higher in FC-SEMS group (87.0% vs. 42.0%, p < 0.001). Although immediate complications occurred similarly (38.5% vs. 37.0%, p = 0.902), spontaneous migration (26.9%) and de novo strictures (23.1%) were pronounced delayed complications in FC-SEMS group. Pain relief during follow-up was significantly higher in FC-SEMS group (76.9% vs. 53.7%, p = 0.046). The total procedure cost was similar in both groups ($1,455.6 vs. $1,596.9, p = 0.486). In comparison with plastic stent, FC-SEMS placement for persistent MPD strictures had favorable long-term clinical efficacy, with its typical complications like spontaneous migration and de novo strictures.


Author(s):  
Michael Heuser ◽  
B. Douglas Smith ◽  
Walter Fiedler ◽  
Mikkael A. Sekeres ◽  
Pau Montesinos ◽  
...  

AbstractThis analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.


2021 ◽  
Vol 22 (13) ◽  
pp. 7236
Author(s):  
Endah Dwi Hartuti ◽  
Takaya Sakura ◽  
Mohammed S. O. Tagod ◽  
Eri Yoshida ◽  
Xinying Wang ◽  
...  

Plasmodium falciparum’s resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2273
Author(s):  
Menelaos Kavouras ◽  
Emmanouil E. Malandrakis ◽  
Ewout Blom ◽  
Kyriaki Tsilika ◽  
Theodoros Danis ◽  
...  

In farmed flatfish, such as common sole, color disturbances are common. Dyschromia is a general term that includes the color defects on the blind and ocular sides of the fish. The purpose was to examine the difference in gene expression between normal pigmented and juveniles who present ambicoloration. The analysis was carried out with next-generation sequencing techniques and de novo assembly of the transcriptome. Transcripts that showed significant differences (FDR < 0.05) in the expression between the two groups, were related to those of zebrafish (Danio rerio), functionally identified, and classified into categories of the gene ontology. The results revealed that ambicolorated juveniles exhibit a divergent function, mainly of the central nervous system at the synaptic level, as well as the ionic channels. The close association of chromophore cells with the growth of nerve cells and the nervous system was recorded. The pathway, glutamate binding–activation of AMPA and NMDA receptors–long-term stimulation of postsynaptic potential–LTP (long term potentiation)–plasticity of synapses, appears to be affected. In addition, the development of synapses also seems to be affected by the interaction of the LGI (leucine-rich glioma inactivated) protein family with the ADAM (a disintegrin and metalloprotease) ones.


2021 ◽  
Vol 22 (6) ◽  
pp. 3115
Author(s):  
Lorenzo Germelli ◽  
Eleonora Da Pozzo ◽  
Chiara Giacomelli ◽  
Chiara Tremolanti ◽  
Laura Marchetti ◽  
...  

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery—in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document