scholarly journals Plexins Promote Hedgehog Signaling Through Their Cytoplasmic GAP Activity

2021 ◽  
Author(s):  
Justine M Pinskey ◽  
Tyler M Hoard ◽  
Xiao-Feng Zhao ◽  
Nicole E Franks ◽  
Zoe C Frank ◽  
...  

Hedgehog signaling controls tissue patterning during embryonic and postnatal development and continues to play important roles throughout life. Characterizing the full complement of Hedgehog pathway components is essential to understanding its wide-ranging functions. Previous work has identified Neuropilins, established Semaphorin receptors, as positive regulators of Hedgehog signaling. Neuropilins require Plexin co-receptors to mediate Semaphorin signaling, but a role for Plexins in Hedgehog signaling has not yet been explored. Here, we provide evidence that multiple Plexins promote Hedgehog signaling in NIH/3T3 fibroblasts and that Plexin loss-of-function in these cells results in significantly reduced Hedgehog pathway activity. Catalytic activity of the Plexin GTPase activating protein (GAP) domain is required for Hedgehog signal promotion, and constitutive activation of the GAP domain further amplifies Hedgehog signaling. Additionally, we demonstrate that Plexins promote Hedgehog signaling at the level of GLI transcription factors and that this promotion requires intact primary cilia. Finally, we find that Plexin loss-of-function significantly reduces the response to Hedgehoga pathway activation in the mouse dentate gyrus. Together, these data identify Plexins as novel components of the Hedgehog pathway and provide insight into their mechanism of action.

2018 ◽  
Vol 29 (10) ◽  
pp. 1178-1189 ◽  
Author(s):  
Thibaut Eguether ◽  
Fabrice P. Cordelieres ◽  
Gregory J. Pazour

The vertebrate hedgehog pathway is organized in primary cilia, and hedgehog components relocate into or out of cilia during signaling. Defects in intraflagellar transport (IFT) typically disrupt ciliary assembly and attenuate hedgehog signaling. Determining whether IFT drives the movement of hedgehog components is difficult due to the requirement of IFT for building cilia. Unlike most IFT proteins, IFT27 is dispensable for cilia formation but affects hedgehog signaling similarly to other IFTs, allowing us to examine its role in the dynamics of signaling. Activating signaling at points along the pathway in Ift27 mutant cells showed that IFT is extensively involved in the pathway. Similar analysis of Bbs mutant cells showed that BBS proteins participate at many levels of signaling but are not needed to concentrate Gli transcription factors at the ciliary tip. Our analysis showed that smoothened delivery to cilia does not require IFT27, but the role of other IFTs is not known. Using a rapamycin-induced dimerization system to sequester IFT-B proteins at the mitochondria in cells with fully formed cilia did not affect the delivery of Smo to cilia, suggesting that this membrane protein may not require IFT-B for delivery.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1908
Author(s):  
Anke Koeniger ◽  
Anna Brichkina ◽  
Iris Nee ◽  
Lukas Dempwolff ◽  
Anna Hupfer ◽  
...  

Although being rare in absolute numbers, neuroblastoma (NB) represents the most frequent solid tumor in infants and young children. Therapy options and prognosis are comparably good for NB patients except for the high risk stage 4 class. Particularly in adolescent patients with certain genetic alterations, 5-year survival rates can drop below 30%, necessitating the development of novel therapy approaches. The developmentally important Hedgehog (Hh) pathway is involved in neural crest differentiation, the cell type being causal in the etiology of NB. However, and in contrast to its function in some other cancer types, Hedgehog signaling and its transcription factor GLI1 exert tumor-suppressive functions in NB, rendering GLI1 an interesting new candidate for anti-NB therapy. Unfortunately, the therapeutic concept of pharmacological Hh/GLI1 pathway activation is difficult to implement as NB cells have lost primary cilia, essential organelles for Hh perception and activation. In order to bypass this bottleneck, we have identified a GLI1-activating small molecule which stimulates endogenous GLI1 production without the need for upstream Hh pathway elements such as Smoothened or primary cilia. This isoxazole compound potently abrogates NB cell proliferation and might serve as a starting point for the development of a novel class of NB-suppressive molecules.


Author(s):  
Yang Yue ◽  
Martin F. Engelke ◽  
T. Lynne Blasius ◽  
Kristen J. Verhey

The kinesin-4 motor KIF7 is a conserved regulator of the Hedgehog signaling pathway. In vertebrates, Hedgehog signaling requires the primary cilium, and KIF7 and Gli transcription factors accumulate at the cilium tip in response to Hedgehog activation. Unlike conventional kinesins, KIF7 is an immotile kinesin and its mechanism of ciliary accumulation is unknown. We generated KIF7 variants with altered microtubule binding or motility. We demonstrate that microtubule binding of KIF7 is not required for the increase in KIF7 or Gli localization at the cilium tip in response to Hedgehog signaling. In addition, we show that the immotile behavior of KIF7 is required to prevent ciliary localization of Gli transcription factors in the absence of Hedgehog signaling. Using an engineered kinesin-2 motor that enables acute inhibition of intraflagellar transport (IFT), we demonstrate that kinesin-2 KIF3A/KIF3B/KAP mediates the translocation of KIF7 to the cilium tip in response to Hedgehog pathway activation. Together, these results suggest that KIF7’s role at the tip of the cilium is unrelated to its ability to bind to microtubules.


2020 ◽  
Author(s):  
A. de la Rocha-Muñoz ◽  
E. Núñez ◽  
S. Gómez-López ◽  
B. López-Corcuera ◽  
J. de Juan-Sanz ◽  
...  

ABSTRACTThe identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by decreasing its mRNA levels and increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability.


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Petra Pejskova ◽  
Madeline Louise Reilly ◽  
Lucia Bino ◽  
Ondrej Bernatik ◽  
Linda Dolanska ◽  
...  

Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrés de la Rocha-Muñoz ◽  
Enrique Núñez ◽  
Anjali Amrapali Vishwanath ◽  
Sergio Gómez-López ◽  
Dhanasak Dhanasobhon ◽  
...  

AbstractThe identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability.


Author(s):  
Elena A. May ◽  
Marian Kalocsay ◽  
Inès Galtier D’Auriac ◽  
Steven P. Gygi ◽  
Maxence V. Nachury ◽  
...  

ABSTRACTThe primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog; and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the putative phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.


2020 ◽  
Author(s):  
Nicholas Morante ◽  
Monika Abedin Sigg ◽  
Luke Strauskulage ◽  
David R. Raleigh ◽  
Jeremy F. Reiter

ABSTRACTPrimary cilia are organelles specialized for signaling. We previously defined the proteomes of sea urchin and sea anemone cilia to identify ciliary proteins that predate the origin of bilateria. This evolutionary perspective on cilia identified DYRK2, a kinase not been previously implicated in ciliary biology. We found that DYRK2 localizes to cilia and that loss of DYRK2 disrupts ciliary morphology. We also found that DYRK2 participates in ciliary Hh signal transduction, communicating between SMO and GLI transcription factors. Mutation of mouse Dyrk2 resulted in skeletal defects reminiscent of those caused by loss of Indian hedgehog (Ihh). Like Dyrk2 mutations, pharmacological inhibition of DYRK2 dysregulates ciliary length control and attenuates Hedgehog signaling. Thus, DYRK2 is required for ciliary morphology, for Hedgehog signaling in vitro, and for skeletal development. We propose that DYRK2 is part of the mechanism that transduces SMO to activate GLI transcription factors within cilia.


2021 ◽  
Author(s):  
Patrick J. Antonellis ◽  
Staci E. Engle ◽  
Kathryn M. Brewer ◽  
Nicolas F. Berbari

The importance of the primary cilium was initially highlighted by the class of human genetic disorders known as ciliopathies. Patients with ciliopathies such as Bardet-Biedl and Alstrom syndrome exhibit hyperphagia-associated obesity as a core clinical phenotype. How primary cilia contribute to energy homeostasis and feeding behavior is complex and unclear, but cilia appear important in both developmental and homeostatic processes. Primary cilia are important signaling centers, required for hedgehog signaling and localization of specific G protein-coupled receptors (GPCRs) with known roles in feeding behavior in mammals. The hedgehog pathway is best known for its role in developmental patterning, but now has recognized roles in adult tissues as well. In the postnatal brain, cilia and hedgehog signaling are important for growth and maintenance of neural progenitors, however, the role of hedgehog signaling in the differentiated adult brain is less clear. Here, we provide a detailed analysis of the expression of core components of the hedgehog signaling pathway in the adult mouse hypothalamus with an emphasis on feeding centers. We show that hedgehog pathway genes continue to be expressed in differentiated neurons important for regulation of feeding behavior. Furthermore, we demonstrate for the first time that pathway activity is regulated at the transcriptional level by fasting. These data suggest that hedgehog signaling is involved in the proper functioning of brain regions which regulate feeding behavior and that hedgehog pathway dysfunction may play a role in the obesity observed in certain ciliopathies.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Elena A. May ◽  
Marian Kalocsay ◽  
Inès Galtier D’Auriac ◽  
Patrick S. Schuster ◽  
Steven P. Gygi ◽  
...  

The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein–coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type–specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.


Sign in / Sign up

Export Citation Format

Share Document