scholarly journals Macrogenetics reveals multifaceted influences of environmental variation on vertebrate population genetic diversity across the Americas

2021 ◽  
Author(s):  
Elizabeth R Lawrence ◽  
Dylan J Fraser

Relative to species diversity gradients, the broad scale distribution of population-specific genetic diversity (PGD) across taxa remains understudied. We used nuclear DNA data collected from 6285 vertebrate populations across the Americas to assess the role environmental variables play in structuring the spatial/latitudinal distribution of PGD, a key component of adaptive potential in the face of environmental change. Our results provide key evidence for taxa-specific responses and that temperature variability in addition to mean temperature may be a primary driver of PGD. Additionally, we found some positive influence of precipitation, productivity, and elevation on PGD; identified trends were dependent on the metric of PGD. In contrast to the classic negative relationship between species diversity and latitude, we report either a positive or taxa-dependent relationship between PGD and latitude, depending on the metric of PGD. The inconsistent latitudinal gradient in different metrics of PGD may be due to opposing processes diminishing patterns across latitudes that operate on different timescales, as well as the flattening of large-scale genetic gradients when assessing across species versus within species. Our study highlights the nuance required to assess broad patterns in genetic diversity, and the need for developing balanced conservation strategies that ensure population, species, and community persistence.

2011 ◽  
Vol 9 (3) ◽  
pp. 411-422 ◽  
Author(s):  
M. R. Ahuja

This study reviews the various conservation strategies applied to the four redwood species, namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American redwood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South America, respectively. All four redwood genera belong to the family Cupressaceae; they are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their native ranges due to human activity and a changing climate. Therefore, the management objective should be to conserve representative populations of the native species with as much genetic diversity as possible for their future survival. Those representative populations exhibiting relatively high levels of genetic diversity should be selected for germplasm preservation and monitored during the conservation phase by using molecular markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods are discussed in this study. A holistic in situ gene conservation strategy calls for the regeneration of a large number of diverse redwood genotypes that exhibit adequate levels of neutral and adaptive genetic variability, by generative and vegetative methods for their preservation and maintenance in their endemic locations. At the same time, it would be desirable to conserve the redwoods in new ex situ reserves, away from their endemic locations with similar as well as different environmental conditions for testing their growth and survival capacities. In addition, other ex situ strategies involving biotechnological approaches for preservation of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of global climate change.


2021 ◽  
Author(s):  
Adriana Humanes ◽  
John Bythell ◽  
Elizabeth Beauchamp ◽  
Mitch Carl ◽  
Jamie Craggs ◽  
...  

AbstractCoral cover on tropical reefs has declined during the last three decades due to the combined effects of climate change, destructive fishing, pollution, and land use change. Drastic reductions in greenhouse gas emissions combined with effective coastal management and conservation strategies are essential to slow this decline. Innovative approaches, such as selective breeding for adaptive traits combined with large-scale sexual propagation, are being developed with the aim of pre-adapting reefs to increased ocean warming. However, there are still major gaps in our understanding of the technical and methodological constraints to producing corals for such restoration interventions. Here we propose a framework for selectively breeding corals and rearing them from eggs to 2.5-year old colonies using the coral Acropora digitifera as a model species. We present methods for choosing colonies for selective crossing, enhancing early survivorship in ex situ and in situ nurseries, and outplanting and monitoring colonies on natal reefs. We used a short-term (7-day) temperature stress assay to select parental colonies based on heat tolerance of excised branches. From six parental colonies, we produced 12 distinct crosses, and compared survivorship and growth of colonies transferred to in situ nurseries or outplanted to the reef at different ages. We demonstrate that selectively breeding and rearing coral colonies is technically feasible at small scales and could be upscaled as part of restorative assisted evolution initiatives. Nonetheless, there are still challenges to overcome before selective breeding can be implemented as a viable conservation tool, especially at the post-settlement and outplanting phases. Although interdisciplinary approaches will be needed to overcome many of the challenges identified in this study, selective breeding has the potential to be a viable tool within reef managers’ toolbox to support the persistence of selected reefs in the face of climate change.


Author(s):  
T.H. Oliver

Human activities in the Anthropocene are influencing the twin processes of biodiversity generation and loss in complex ways that threaten the maintenance of biodiversity levels that underpin human well-being. Yet many scientists and practitioners still present a simplistic view of biodiversity as a static stock rather than one determined by a dynamic interplay of feedback processes that are affected by anthropogenic drivers. Biodiversity describes the variety of life on Earth, from the genes within an organism to the ecosystem level. However, this article focuses on variation among living organisms, both within and between species. Within species, biodiversity is reflected in genetic, and consequent phenotypic, variations among individuals. Genetic diversity is generated by germ line mutations, genetic recombination during sexual reproduction, and immigration of new genotypes into populations. Across species, biodiversity is reflected in the number of different species present and also, by some metrics, in the evenness of their relative abundance. At this level, biodiversity is generated by processes of speciation and immigration of new species into an area. Anthropogenic drivers affect all these biodiversity generation processes, while the levels of genetic diversity can feed back and affect the level of species diversity, and vice versa. Therefore, biodiversity maintenance is a complex balance of processes and the biodiversity levels at any point in time may not be at equilibrium. A major concern for humans is that our activities are driving rapid losses of biodiversity, which outweigh by orders of magnitude the processes of biodiversity generation. A wide range of species and genetic diversity could be necessary for the provision of ecosystem functions and services (e.g., in maintaining the nutrient cycling, plant productivity, pollination, and pest control that underpin crop production). The importance of biodiversity becomes particularly marked over longer time periods, and especially under varying environmental conditions. In terms of biodiversity losses, there are natural processes that cause roughly continuous, low-level losses, but there is also strong evidence from fossil records for transient events in which exceptionally large loss of biodiversity has occurred. These major extinction episodes are thought to have been caused by various large-scale environmental perturbations, such as volcanic eruptions, sea-level falls, climatic changes, and asteroid impacts. From all these events, biodiversity has shown recovery over subsequent calmer periods, although the composition of higher-level evolutionary taxa can be significantly altered. In the modern era, biodiversity appears to be undergoing another mass extinction event, driven by large-scale human impacts. The primary mechanisms of biodiversity loss caused by humans vary over time and by geographic region, but they include overexploitation, habitat loss, climate change, pollution (e.g., nitrogen deposition), and the introduction of non-native species. It is worth noting that human activities may also lead to increases in biodiversity in some areas through species introductions and climatic changes, although these overall increases in species richness may come at the cost of loss of native species, and with uncertain effects on ecosystem service delivery. Genetic diversity is also affected by human activities, with many examples of erosion of diversity through crop and livestock breeding or through the decline in abundance of wild species populations. Significant future challenges are to develop better ways to monitor the drivers of biodiversity loss and biodiversity levels themselves, making use of new technologies, and improving coverage across geographic regions and taxonomic scope. Rather than treating biodiversity as a simple stock at equilibrium, developing a deeper understanding of the complex interactions—both between environmental drivers and between genetic and species diversity—is essential to manage and maintain the benefits that biodiversity delivers to humans, as well as to safeguard the intrinsic value of the Earth’s biodiversity for future generations.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuxiang Fei ◽  
Rong Hou ◽  
James R. Spotila ◽  
Frank V. Paladino ◽  
Dunwu Qi ◽  
...  

Abstract The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Adriana Humanes ◽  
Elizabeth A. Beauchamp ◽  
John C. Bythell ◽  
Mitch K. Carl ◽  
Jamie R. Craggs ◽  
...  

Coral cover on tropical reefs has declined during the last three decades due to the combined effects of climate change, destructive fishing, pollution, and land use change. Drastic reductions in greenhouse gas emissions combined with effective coastal management and conservation strategies are essential to slow this decline. Innovative approaches, such as selective breeding for adaptive traits combined with large-scale sexual propagation, are being developed with the aim of pre-adapting reefs to increased ocean warming. However, there are still major gaps in our understanding of the technical and methodological constraints to producing corals for such restoration interventions. Here we propose a framework for selectively breeding corals and rearing them from eggs to 2.5-year old colonies using the coral Acropora digitifera as a model species. We present methods for choosing colonies for selective crossing, enhancing early survivorship in ex situ and in situ nurseries, and outplanting and monitoring colonies on natal reefs. We used a short-term (7-day) temperature stress assay to select parental colonies based on heat tolerance of excised branches. From six parental colonies, we produced 12 distinct crosses, and compared survivorship and growth of colonies transferred to in situ nurseries or outplanted to the reef at different ages. We demonstrate that selectively breeding and rearing coral colonies is technically feasible at small scales and could be upscaled as part of restorative assisted evolution initiatives. Nonetheless, there are still challenges to overcome before selective breeding can be implemented as a viable conservation tool, especially at the post-settlement and outplanting phases. Although interdisciplinary approaches will be needed to overcome many of the challenges identified in this study, selective breeding has the potential to be a viable tool within a reef managers toolbox to support the persistence of selected reefs in the face of climate change.


Sports ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 102
Author(s):  
Franziska Beck ◽  
Michael Mutz ◽  
Eliane Stephanie Engels ◽  
Anne Kerstin Reimers

Measures to slow down the spread of coronavirus SARS-CoV-2 have had an impact on the daily life and physical activity (PA) of many people. Nevertheless, in Germany, mitigation policies and incidence values vary widely across the federal states (Länder). Thus, the aim of the present study was to investigate regional differences in PA during the coronavirus pandemic. This study is based on the SPOVID project (Examining physical activity and sports behavior in the face of COVID-19 pandemic: a social inequality perspective) that incorporates a large-scale, representative cross-sectional survey representing the German population (≥14 years). Based on the survey that took place in October 2020 (N = 1477), we investigated the relationships between the COVID-19 incidence values as well as the mitigation policies across the federal states in Germany and changes in PA. Pearson correlations indicated a strong negative relationship between PA change and 7-day incidence values (r = −0.688 **, p = 0.009) and a moderate negative relationship between PA changes and an index of mitigation policies (r = −0.444, p = 0.112). Higher 7-day incidence values and stricter mitigation policies were associated with a stronger decline in PA levels. Therefore, it is important to support people to stay active even if there are restrictions. In particular, in federal states and regions with high incidences and stricter mitigation policies, measures to promote health-enhancing PA are necessary.


2020 ◽  
Vol 642 ◽  
pp. 163-177 ◽  
Author(s):  
Y Niella ◽  
AF Smoothey ◽  
V Peddemors ◽  
R Harcourt

In the face of accelerating climate change, conservation strategies will need to consider how marine animals deal with forecast environmental change as well as ongoing threats. We used 10 yr (2009-2018) of data from commercial fisheries and a bather protection program along the coast of New South Wales (NSW), southeastern Australia, to investigate (1) spatial and temporal patterns of occurrence in bull sharks and (2) environmental factors affecting bull shark occurrence along the coast of NSW. Predicted future distribution for this species was modelled for the forecast strengthening East Australian Current. Bull sharks were mostly harvested in small to larger estuaries, with average depth and rainfall responsible for contrasting patterns for each of the fisheries. There was an increase in the occurrence of bull sharks over the last decade, particularly among coastal setline fisheries, associated with seasonal availability of thermal gradients >22°C and both westward and southward coastal currents stronger than 0.15 and 0.60 m s-1, respectively, during the austral summer. Our model predicts a 3 mo increase in the availability of favourable water temperatures along the entire coast of NSW for bull sharks by 2030. This coastline provides a uniquely favourable topography for range expansion in the face of a southerly shift of warmer waters, and habitat is unlikely to be a limiting factor for bull sharks in the future. Such a southerly shift in distribution has implications for the management of bull sharks both in commercial fisheries and for mitigation of shark-human interactions.


Sign in / Sign up

Export Citation Format

Share Document