scholarly journals Accumulation of Treg cells is detrimental in late-onset (aged) mouse model of multiple sclerosis

2021 ◽  
Author(s):  
Weikan Wang ◽  
Rachel Thomas ◽  
Jiyoung Oh ◽  
Dong-Ming Su

Although typically associated with onset in young adults, multiple sclerosis (MS) also attacks aged people, which is termed late-onset MS. The disease can be recapitulated and studied in the aged mouse model of experimental autoimmune encephalomyelitis (EAE). The onset of induced EAE is delayed in aged mice, but the disease severity is increased relative to standard EAE in young mice. Given that CD4+FoxP3+ regulatory T (Treg) cells play an ameliorative role in MS/EAE severity and the aged immune system accumulates Treg cells, failure of these cells to prevent or ameliorate EAE disease is enigmatic. When analyzing the distribution of Treg cells in EAE mice, the aged mice exhibited a higher proportion of polyclonal(pan) Treg cells and a lower proportion of antigen-specific-Treg cells in their periphery, but lower proportions of pan- and antigen-specific-Treg cells in the central nervous system (CNS). Furthermore, in the aged CNS, Treg cells exhibited a higher plasticity and T effector (Teff) cells exhibited a greater clonal expansion, which disrupted the Treg/Teff balance. Transiently inhibiting FoxP3 expression in peripheral Treg cells partially ameliorated the disease and corrected Treg distribution in the aged mice. These results provide evidence that accumulated aged Treg cells play a detrimental role in neuronal inflammation of aged MS.

2021 ◽  
Author(s):  
William E. Barclay ◽  
M. Elizabeth Deerhake ◽  
Makoto Inoue ◽  
Toshiaki Nonaka ◽  
Kengo Nozaki ◽  
...  

ABSTRACTInflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are such autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here we use multiple genetically modified mouse models to monitor activated inflammasomes in situ based on ASC oligomerization in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation was dependent on AIM2, but low IL-1β expression and no significant signs of cell death were found in astrocytes during EAE. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.SIGNIFICANCE STATEMENTInflammasome activation in the peripheral immune system is pathogenic in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, inflammasome activity in the central nervous system (CNS) is largely unexplored. Here, we used genetically modified mice to determine inflammasome activation in the CNS during EAE. Our data indicated heightened AIM2 inflammasome activation in astrocytes after the disease peak. Unexpectedly, neither CNS-infiltrated myeloid cells nor microglia were the primary cells with activated inflammasomes in SC during EAE. Despite AIM2 inflammasome activation, astrocytes did not undergo apparent cell death and produced little of the proinflammatory cytokine, IL-1β, during EAE. This study showed that CNS inflammasome activation occurs during EAE without associating with IL-1β-mediated inflammation.


2020 ◽  
Vol 21 (23) ◽  
pp. 9249
Author(s):  
Lars Masanneck ◽  
Susann Eichler ◽  
Anna Vogelsang ◽  
Melanie Korsen ◽  
Heinz Wiendl ◽  
...  

Cyclic GMP-AMP-synthase is a sensor of endogenous nucleic acids, which subsequently elicits a stimulator of interferon genes (STING)-dependent type I interferon (IFN) response defending us against viruses and other intracellular pathogens. This pathway can drive pathological inflammation, as documented for type I interferonopathies. In contrast, specific STING activation and subsequent IFN-β release have shown beneficial effects on experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Although less severe cases of relapse-remitting MS (RRMS) are treated with IFN-β, there is little information correlating aberrant type I IFN signaling and the pathologic conditions of MS. We hypothesized that there is a link between STING activation and the endogenous production of IFN-β during neuroinflammation. Gene expression analysis in EAE mice showed that Sting level decreased in the peripheral lymphoid tissue, while its level increased within the central nervous system over the course of the disease. Similar patterns could be verified in peripheral immune cells during the acute phases of RRMS in comparison to remitting phases and appropriately matched healthy controls. Our study is the first to provide evidence that the STING/IFN-β-axis is downregulated in RRMS patients, meriting further intensified research to understand its role in the pathophysiology of MS and potential translational applications.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


2020 ◽  
Vol 10 (5) ◽  
pp. 299
Author(s):  
Athanasios Metaxakis ◽  
Dionysia Petratou ◽  
Nektarios Tavernarakis

Multiple sclerosis (MS) is an autoimmune life-threatening disease, afflicting millions of people worldwide. Although the disease is non-curable, considerable therapeutic advances have been achieved through molecular immunotherapeutic approaches, such as peptides vaccination, administration of monoclonal antibodies, and immunogenic copolymers. The main aims of these therapeutic strategies are to shift the MS-related autoimmune response towards a non-inflammatory T helper 2 (Th2) cells response, inactivate or ameliorate cytotoxic autoreactive T cells, induce secretion of anti-inflammatory cytokines, and inhibit recruitment of autoreactive lymphocytes to the central nervous system (CNS). These approaches can efficiently treat autoimmune encephalomyelitis (EAE), an essential system to study MS in animals, but they can only partially inhibit disease progress in humans. Nevertheless, modern immunotherapeutic techniques remain the most promising tools for the development of safe MS treatments, specifically targeting the cellular factors that trigger the initiation of the disease.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 748 ◽  
Author(s):  
Gabriele Di Sante ◽  
Susanna Amadio ◽  
Beatrice Sampaolese ◽  
Maria Elisabetta Clementi ◽  
Mariagrazia Valentini ◽  
...  

S100B is an astrocytic protein acting either as an intracellular regulator or an extracellular signaling molecule. A direct correlation between increased amount of S100B and demyelination and inflammatory processes has been demonstrated. The aim of this study is to investigate the possible role of a small molecule able to bind and inhibit S100B, pentamidine, in the modulation of disease progression in the relapsing–remitting experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. By the daily evaluation of clinical scores and neuropathologic-molecular analysis performed in the central nervous system, we observed that pentamidine is able to delay the acute phase of the disease and to inhibit remission, resulting in an amelioration of clinical score when compared with untreated relapsing–remitting experimental autoimmune encephalomyelitis mice. Moreover, we observed a significant reduction of proinflammatory cytokines expression levels in the brains of treated versus untreated mice, in addition to a reduction of nitric oxide synthase activity. Immunohistochemistry confirmed that the inhibition of S100B was able to modify the neuropathology of the disease, reducing immune infiltrates and partially protecting the brain from the damage. Overall, our results indicate that pentamidine targeting the S100B protein is a novel potential drug to be considered for multiple sclerosis treatment.


2019 ◽  
Vol 20 (18) ◽  
pp. 4323 ◽  
Author(s):  
Salvo Danilo Lombardo ◽  
Emanuela Mazzon ◽  
Maria Sofia Basile ◽  
Giorgia Campo ◽  
Federica Corsico ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses, but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28 is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3 is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent minor changes upon activation. The in vitro data were finally translated into the context of multiple sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T helper immune response and may represent a target of future immunoregulatory therapies for T cell-mediated autoimmune diseases.


2015 ◽  
Vol 35 (4) ◽  
pp. 1623-1632 ◽  
Author(s):  
Yinan Shen ◽  
Yongpeng Wei ◽  
Zhouchong Wang ◽  
Yingying Jing ◽  
Haiguan He ◽  
...  

Background/Aims: TGF-β plays a key role in the progression of various tumors. The main objective of our study was to investigate whether TGF-β is able to regulate N-nitrosodiethylamine (DEN)-induced hepatocellular carcinoma (HCC) progression in a mouse model by inducing Treg cell polarization. Methods: HCC progression, TGF-β and Foxp3 expression levels, serum TGF-β, IL10 and GP73 levels as well as percentage of Treg cells were analyzed in healthy, HCC and HCC+SM-16 mouse groups. The effect of TGF-β on Treg cell polarization in vitro was measured by flow cytometric analysis. The expression of TGF-β and IL10 was identified by IHC in HCC patients and the correlation between TGF-β and IL10 was also assessed. Results: TGF-β expression is up-regulated in a DEN-induced HCC mouse model. TGF-β can promote the differentiation of Foxp3+CD4+ T cells (Treg cells) in vitro. However, blocking the TGF-β pathway with a specific TGF-β receptor inhibitor, SM-16, reduced HCC progression and the percentage of Treg cells in liver tissue. The correlation between TGF-β and Treg cells was also confirmed in HCC patients and the expression of both TGF-β and IL-10 was shown to be associated with HCC progression. Conclusion: TGF-β is necessary for HCC progression, acting by inducing Treg cell polarization.


Sign in / Sign up

Export Citation Format

Share Document