scholarly journals An exploratory study on the microbiome of northern and southern populations of Ixodes scapularis ticks predicts changes and unique bacterial interactions

2021 ◽  
Author(s):  
Deepak Kumar ◽  
Latoyia P. Downs ◽  
Abdulsalam Adegoke ◽  
Erika Machtinger ◽  
Kelly Oggenfuss ◽  
...  

The black-legged tick (Ixodes scapularis) is the primary vector of Borrelia burgdorferi, the causative agent of Lyme disease in North America. However, the prevalence of Lyme borreliosis is clustered around the northern states of the United States of America. This study utilized a metagenomic sequencing approach to compare the microbial communities residing within Ix. scapularis populations from north and southern geographic locations in the USA. Using a SparCC network construction model, potential interactions between members of the microbial communities from Borrelia burgdorferi-infected tissues of unfed and blood-fed ticks were performed. A significant difference in bacterial composition and diversity among northern and southern tick populations was found between northern and southern tick populations. The network analysis predicted a potential antagonistic interaction between endosymbiont Rickettsia buchneri and Borrelia burgdorferi sensu lato. Network analysis, as expected, predicted significant positive and negative microbial interactions in ticks from these geographic regions, with the genus Rickettsia, Francisella, and Borreliella playing an essential role in the identified clusters. Interactions between Rickettsia buchneri and Borrelia burgdorferi sensu lato needs more validation and understanding. Understanding the interplay between the micro-biome and tick-borne pathogens within tick vectors may pave the way for new strategies to prevent tick-borne infections.

Healthcare ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Janet Foley ◽  
Bradley Bierman ◽  
Lance Durden

Lyme disease has been documented in northern areas of Canada, but the source of the etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis, were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta. Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada. DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings, health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected I. scapularis in Canada’s North, and local residents do not have to visit an endemic area to contract Lyme disease.


2021 ◽  
Author(s):  
Joann Phan ◽  
Divya Nair ◽  
Suneer Jain ◽  
Thibaut Montagne ◽  
Demi Valeria Flores ◽  
...  

AbstractBackgroundIrritable bowel syndrome (IBS) is characterized by abdominal discomfort and irregular bowel movements and stool consistency. Because there are different symptoms associated with IBS, it is difficult to diagnose the role of the microbiome in IBS.ObjectiveHere, we present a study that includes metagenomic sequencing of stool samples from subjects with the predominant subtypes of IBS and a healthy cohort. We collected longitudinal samples from individuals with IBS who took daily made-to-order precision probiotic and prebiotic supplementation throughout the study.Materials and MethodsThis study includes a population of 489 individuals with IBS and 122 healthy controls. All stool samples were subjected to shotgun metagenomic sequencing. Precision probiotics and prebiotics were formulated for all subjects with longitudinal timepoints.ResultsThere was significant variation explained in the microbiome between the healthy and IBS cohorts. Individuals with IBS had a lower gut microbiome diversity and reduced anti-inflammatory microbes compared to the healthy controls. Eubacterium rectale and Faecalibacterium prausnitzii were associated with healthy microbiomes while Shigella species were associated with IBS. Pathway analysis indicated a functional imbalance of short chain fatty acids, vitamins, and a microbial component of Gram-negative bacteria in IBS compared to healthy controls. In the longitudinal dataset, there was a significant difference in microbiome composition between timepoints 1 and 3. There was also a significant increase in the overall microbiome score and relative abundances of probiotic species used to target the symptoms associated with IBS.ConclusionsWe identified microbes and pathways that differentiate healthy and IBS microbiomes. In response to precision probiotic supplementation, we identified a significant improvement in the overall microbiome score in individuals with IBS. These results suggest an important role for probiotics in managing IBS symptoms and modulation of the microbiome as a potential management strategy.ImportanceAn estimated 35 million people in the United States and 11.5% of the population globally are affected by IBS. Immunity, genetics, environment, diet, small intestinal bacterial overgrowth (SIBO), and the gut microbiome are all factors that contribute to the onset or triggers of IBS. With strong supporting evidence that the gut microbiome may influence symptoms associated with IBS, elucidating the important microbes that contribute to the symptoms and severity is important to make decisions for targeted treatment. As probiotics have become more common in treating IBS symptoms, identifying effective probiotics may help inform future studies and treatment.


2021 ◽  
Author(s):  
Deepak Kumar ◽  
Surendra Raj Sharma ◽  
Abdulsalam Adegoke ◽  
Ashley Kennedy ◽  
Holly C. Tuten ◽  
...  

Abstract BackgroundTicks are hematophagous arthropods that transmit various bacterial, viral, and protozoan pathogens of public health significance. The lone star tick (Amblyomma americanum) is an aggressive human-biting tick that transmits bacterial and viral pathogens, and its bites are suspected of eliciting the Alpha-Gal Syndrome, a newly emerged delayed hypersensitivity following consumption of red meat in the United States. While ongoing studies have attempted to investigate the contribution of different tick-inherent factors to the induction of Alpha-Gal syndrome, an otherwise understudied aspect is the contribution of the tick microbiome and specifically obligate endosymbionts to the establishment of the Alpha-Gal syndrome in humans.MethodsHere we utilized a high throughput metagenomic sequencing approach to cataloging the entire microbial communities residing within different developmental stages and tissues of unfed and blood-fed ticks from laboratory-maintained ticks and three new geographical locations in the USA. The quantitative insights into microbial ecology (QIIME2) pipeline were used to perform data analysis and taxonomic classification. Moreover, using a SparCC network construction model, we investigated potential interactions between members of the microbial communities from lab-maintained and field-collected ticks. ResultsOverall, Francisellaceae was the most dominant bacteria identified in the microbiome of both lab-raised and field-collected Am. americanum across all tissues and developmental stages. Likewise, microbial diversity was seen to be significantly higher in field-collected ticks compared to lab-maintained ticks as seen with a higher number of both OTUs and measures of species richness. Several potential positive and negative correlations were identified from our network analysis. We observed a strong positive correlation between Francisellaceae, Rickettsiaceae, and Midichloriaceae in both developmental stages and tissues from lab-maintained ticks, while ovarian tissues had a strong positive correlation of bacteria in the family Xanthobacteraceae and Rhizobiaceae. A negative interaction was observed between Coxiellaceae and Francisellaceae in Illinois, and all the bacteria detected from ticks from Delaware were negatively correlated.ConclusionThis study is the first to catalog the microbiome of Am. americanum throughout its developmental stages and different tissue niches and report the potential replacement of Coxiellaceae by Francisellaceae across developmental stages and tissues tested except in ovarian tissues. These unique and significant findings advance our knowledge and open a new avenue of research to further understand the role of tick microbiome in tick-borne diseases and develop a holistic strategy to control Alpha-Gal syndrome.


Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 46 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Lance Durden

Wild birds transport ticks into Canada that harbor a diversity of zoonotic pathogens. However, medical practitioners often question how these zoonotic pathogens are present in their locality. In this study, we provide the first report of an Amblyomma inornatum tick cofeeding with a blacklegged tick, Ixodes scapularis, which parasitized a Veery, Catharus fuscescens—a neotropical songbird. Using the flagellin (flaB) gene of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, and the 18S rRNA gene of the Babesia piroplasm, a malaria-like microorganism, we detected Borrelia burgdorferi sensu stricto and Babesia odocoilei, respectively, in an I. scapularis nymph. After the molt, these ticks can bite humans. Furthermore, this is the first documentation of B. odocoilei in a tick parasitizing a bird. Our findings substantiate the fact that migratory songbirds transport neotropical ticks long distances, and import them into Canada during northward spring migration. Health care practitioners need to be aware that migratory songbirds transport pathogen-laden ticks into Canada annually, and pose an unforeseen health risk to Canadians.


Author(s):  
Julia E Poje ◽  
Jose F Azevedo ◽  
Nisha Nair ◽  
Kurayi Mahachi ◽  
Lexi E Frank ◽  
...  

Abstract Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.


2019 ◽  
Vol 119 (1) ◽  
pp. 299-315 ◽  
Author(s):  
Friederike Krämer ◽  
Ricarda Hüsken ◽  
Eva Maria Krüdewagen ◽  
Katrin Deuster ◽  
Byron Blagburn ◽  
...  

AbstractThe capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.


2008 ◽  
Vol 76 (7) ◽  
pp. 2888-2894 ◽  
Author(s):  
Tim J. Schuijt ◽  
Joppe W. R. Hovius ◽  
Nathalie D. van Burgel ◽  
Nandhini Ramamoorthi ◽  
Erol Fikrig ◽  
...  

ABSTRACT Borrelia burgdorferi, the agent of Lyme disease, is transmitted by ticks. During transmission from the tick to the host, spirochetes are delivered with tick saliva, which contains the salivary protein Salp15. Salp15 has been shown to protect spirochetes against B. burgdorferi-specific antibodies. We now show that Salp15 from both Ixodes ricinus and Ixodes scapularis protects serum-sensitive isolates of Borrelia burgdorferi sensu lato against complement-mediated killing. I. ricinus Salp15 showed strong protective effects compared to those of I. scapularis Salp15. Deposition of terminal C5b to C9 (one molecule each of C5b, C6, C7, and C8 and one or more molecules of C9) complement complexes, part of the membrane attack complex, on the surface of B. burgdorferi was inhibited in the presence of Salp15. In the presence of normal human serum, serum-sensitive Borrelia burgdorferi requires protection against complement-mediated killing, which is provided, at least in part, by the binding to the tick salivary protein Salp15.


2018 ◽  
Vol 115 (28) ◽  
pp. E6585-E6594 ◽  
Author(s):  
Mikayla A. Borton ◽  
David W. Hoyt ◽  
Simon Roux ◽  
Rebecca A. Daly ◽  
Susan A. Welch ◽  
...  

Hydraulic fracturing is one of the industrial processes behind the surging natural gas output in the United States. This technology inadvertently creates an engineered microbial ecosystem thousands of meters below Earth’s surface. Here, we used laboratory reactors to perform manipulations of persisting shale microbial communities that are currently not feasible in field scenarios. Metaproteomic and metabolite findings from the laboratory were then corroborated using regression-based modeling performed on metagenomic and metabolite data from more than 40 produced fluids from five hydraulically fractured shale wells. Collectively, our findings show thatHalanaerobium,Geotoga, andMethanohalophilusstrain abundances predict a significant fraction of nitrogen and carbon metabolites in the field. Our laboratory findings also exposed cryptic predatory, cooperative, and competitive interactions that impact microorganisms across fractured shales. Scaling these results from the laboratory to the field identified mechanisms underpinning biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy yields and inform management practices in hydraulically fractured shales.


Sign in / Sign up

Export Citation Format

Share Document