scholarly journals XAB2 Dynamics during DNA Damage-Dependent Transcription Inhibition

2021 ◽  
Author(s):  
Lise-Marie DONNIO ◽  
Elena Cerutti ◽  
Charlene Magnani ◽  
Damien Neuillet ◽  
Pierre-Olivier Mari ◽  
...  

Xeroderma Pigmentosum group A (XPA)-binding protein 2 (XAB2) is a multi-functional protein that plays a critical role in distinct cellular processes including transcription, splicing, DNA repair and mRNA export. In this study, we detailed XAB2 involvement during Nucleotide Excision Repair (NER), a repair pathway that guarantees genome integrity against UV light-induced DNA damage and that specifically removes transcription-blocking damage in a dedicated process known as Transcription-Coupled repair (TC-NER). Here, we demonstrated that XAB2 is involved specifically and exclusively in TC-NER reaction and solely for RNA Polymerase 2 transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage but on the contrary is remobilized after damage induction. This fast change in mobility is restored when DNA repair reactions are completed. By scrutinizing from which cellular complex/partner/structure XAB2 is released, we have identified that XAB2 is detached after DNA damage induction from the DNA:RNA hybrids, commonly known as R-loops, and the CSA and XPG protein and this release is thought to contribute to the DNA damage recognition step during TC-NER. Importantly, we have disclosed a role for XAB2 in retaining RNAP2 on its substrate.

2020 ◽  
Vol 48 (4) ◽  
pp. 1652-1668 ◽  
Author(s):  
Corina Gsell ◽  
Holger Richly ◽  
Frédéric Coin ◽  
Hanspeter Naegeli

Abstract The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


1999 ◽  
Vol 10 (11) ◽  
pp. 3583-3594 ◽  
Author(s):  
Robert M. Brosh ◽  
Adayabalam S. Balajee ◽  
Rebecca R. Selzer ◽  
Morten Sunesen ◽  
Luca Proietti De Santis ◽  
...  

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA andCSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, theCSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.


2014 ◽  
Vol 206 (5) ◽  
pp. 589-598 ◽  
Author(s):  
Salim Ziani ◽  
Zita Nagy ◽  
Sergey Alekseev ◽  
Evi Soutoglou ◽  
Jean-Marc Egly ◽  
...  

In nucleotide excision repair (NER), damage recognition by XPC-hHR23b is described as a critical step in the formation of the preincision complex (PInC) further composed of TFIIH, XPA, RPA, XPG, and ERCC1-XPF. To obtain new molecular insights into the assembly of the PInC, we analyzed its formation independently of DNA damage by using the lactose operator/repressor reporter system. We observed a sequential and ordered self-assembly of the PInC operating upon immobilization of individual NER factors on undamaged chromatin and mimicking that functioning on a bona fide NER substrate. We also revealed that the recruitment of the TFIIH subunit TTDA, involved in trichothiodystrophy group A disorder (TTD-A), was key in the completion of the PInC. TTDA recruits XPA through its first 15 amino acids, depleted in some TTD-A patients. More generally, these results show that proteins forming large nuclear complexes can be recruited sequentially on chromatin in the absence of their natural DNA target and with no reciprocity in their recruitment.


2019 ◽  
Author(s):  
JT Barnett ◽  
J Kuper ◽  
W Koelmel ◽  
C Kisker ◽  
NM Kad

AbstractNucleotide excision repair (NER) protects the genome following exposure to diverse types of DNA damage, including UV light and chemotherapeutics. Mutations in mammalian NER genes lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, and Cockayne syndrome. In eukaryotes, the major transcription factor TFIIH is the central hub of NER. The core components of TFIIH include the helicases XPB, XPD, and five ‘structural’ subunits. Two of these structural TFIIH proteins, p44 and p62 remain relatively unstudied; p44 is known to regulate the helicase activity of XPD during NER whereas p62’s role is thought to be structural. However, a recent cryo-EM structure shows that p44, p62, and XPD make extensive contacts within TFIIH, with part of p62 occupying XPD’s DNA binding site. This observation implies a more extensive role in DNA repair beyond the structural integrity of TFIIH. Here, we show that p44 stimulates XPD’s ATPase but upon encountering DNA damage, further stimulation is only observed when p62 is part of the ternary complex; suggesting a role for the p44/p62 heterodimer in TFIIH’s mechanism of damage detection. Using single molecule imaging, we demonstrate that p44/p62 independently interacts with DNA; it is seen to diffuse, however, in the presence of UV-induced DNA lesions the complex stalls. Combined with the analysis of a recent cryo-EM structure we suggest that p44/p62 acts as a novel DNA-binding entity within TFIIH that is capable of recognizing DNA damage. This revises our understanding of TFIIH and prompts more extensive investigation into the core subunits for an active role during both DNA repair and transcription.


2017 ◽  
Vol 217 (2) ◽  
pp. 527-540 ◽  
Author(s):  
Shalaka Chitale ◽  
Holger Richly

Ultraviolet (UV) irradiation triggers the recruitment of DNA repair factors to the lesion sites and the deposition of histone marks as part of the DNA damage response. The major DNA repair pathway removing DNA lesions caused by exposure to UV light is nucleotide excision repair (NER). We have previously demonstrated that the endoribonuclease DICER facilitates chromatin decondensation during lesion recognition in the global-genomic branch of NER. Here, we report that DICER mediates the recruitment of the methyltransferase MMSET to the DNA damage site. We show that MMSET is required for efficient NER and that it catalyzes the dimethylation of histone H4 at lysine 20 (H4K20me2). H4K20me2 at DNA damage sites facilitates the recruitment of the NER factor XPA. Our work thus provides evidence for an H4K20me2-dependent mechanism of XPA recruitment during lesion recognition in the global-genomic branch of NER.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Benjamin Hilton ◽  
Nick Shkriabai ◽  
Phillip R. Musich ◽  
Mamuka Kvaratskhelia ◽  
Steven Shell ◽  
...  

XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1333
Author(s):  
Ricardo I. Peraza-Vega ◽  
Mahara Valverde ◽  
Emilio Rojas

Understanding the regulation of DNA repair mechanisms is of utmost importance to identify altered cellular processes that lead to diseases such as cancer through genomic instability. In this sense, miRNAs have shown a crucial role. Specifically, miR-27b-3 biogenesis has been shown to be induced in response to DNA damage, suggesting that this microRNA has a role in DNA repair. In this work, we show that the overexpression of miR-27b-3p reduces the ability of cells to repair DNA lesions, mainly double-stranded breaks (DSB), and causes the deregulation of genes involved in homologous recombination repair (HRR), base excision repair (BER), and the cell cycle. DNA damage was induced in BALB/c-3T3 cells, which overexpress miR-27b-3p, using xenobiotic agents with specific mechanisms of action that challenge different repair mechanisms to determine their reparative capacity. In addition, we evaluated the expression of 84 DNA damage signaling and repair genes and performed pathway enrichment analysis to identify altered cellular processes. Taken together, our results indicate that miR-27b-3p acts as a negative regulator of DNA repair when overexpressed.


2010 ◽  
Vol 79 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Min Wu ◽  
Huang Huang ◽  
Weidong Zhang ◽  
Shibichakravarthy Kannan ◽  
Andrew Weaver ◽  
...  

ABSTRACTAlthough DNA repair proteins in bacteria are critical for pathogens' genome stability and for subverting the host defense, the role of host DNA repair proteins in response to bacterial infection is poorly defined. Here, we demonstrate, for the first time, that infection with the Gram-negative bacteriumPseudomonas aeruginosasignificantly altered the expression and enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1) in lung epithelial cells. Downregulation of OGG1 by a small interfering RNA strategy resulted in severe DNA damage and cell death. In addition, acetylation of OGG1 is required for host responses to bacterial genotoxicity, as mutations of OGG1 acetylation sites increased Cockayne syndrome group B (CSB) protein expression. These results also indicate that CSB may be involved in DNA repair activity during infection. Furthermore, OGG1 knockout mice exhibited increased lung injury after infection withP. aeruginosa, as demonstrated by higher myeloperoxidase activity and lipid peroxidation. Together, our studies indicate thatP. aeruginosainfection induces significant DNA damage in host cells and that DNA repair proteins play a critical role in the host response toP. aeruginosainfection, serving as promising targets for the treatment of this condition and perhaps more broadly Gram-negative bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document