scholarly journals Schizophrenia-associated somatic copy number variants from 12,834 cases reveal contribution to risk and recurrent, isoform-specific NRXN1 disruptions

Author(s):  
Eduardo A Maury ◽  
Maxwell A Sherman ◽  
Giulio Genovese ◽  
Thomas G. Gilgenast ◽  
Prashanth Rajarajan ◽  
...  

While inherited and de novo copy number variants (CNV) have been implicated in the genetic architecture of schizophrenia (SCZ), the contribution of somatic CNVs (sCNVs), present in some but not all cells of the body, remains unknown. Here we explore the role of sCNVs in SCZ by analyzing blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls. sCNVs were more common in cases (0.91%) than in controls (0.51%, p = 2.68e-4). We observed recurrent somatic deletions of exons 1-5 of the NRXN1 gene in 5 SCZ cases. Allele-specific Hi-C maps revealed ectopic, allele-specific loops forming between a potential novel cryptic promoter and non-coding cis regulatory elements upon deletions in the 5' region of NRXN1. We also observed recurrent intragenic deletions of ABCB11, a gene associated with anti-psychotic response, in 5 treatment-resistant SCZ cases. Taken together our results indicate an important role of sCNVs to SCZ risk and treatment-responsiveness.

2020 ◽  
Author(s):  
Stephen Cristiano ◽  
David McKean ◽  
Jacob Carey ◽  
Paige Bracci ◽  
Paul Brennan ◽  
...  

AbstractGermline copy number variants (CNVs) increase risk for many diseases, yet detection of CNVs and quantifying their contribution to disease risk in large-scale studies is challenging. We developed an approach called CNPBayes to identify latent batch effects, to provide probabilistic estimates of integer copy number across the estimated batches, and to fully integrate the copy number uncertainty in the association model for disease. We demonstrate this approach in a Pancreatic Cancer Case Control study of 7,598 participants where the major sources of technical variation were not captured by study site and varied across the genome. Candidate associations aided by this approach include deletions of 8q24 near regulatory elements of the tumor oncogene MYC and of Tumor Supressor Candidate 3 (TUSC3). This study provides a robust Bayesian inferential framework for estimating copy number and evaluating the role of copy number in heritable diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David J. Bunyan ◽  
Evelien Gevers ◽  
James I. Hobbs ◽  
Philippa J. Duncan-Flavell ◽  
Rachel J. Howarth ◽  
...  

Abstract Background Transcriptional regulation of the SHOX gene is highly complex. Much of our understanding has come from the study of copy number changes of conserved non-coding sequences both upstream and downstream of the gene. Downstream deletions have been frequently reported in patients with Leri–Weill dyschondrosteosis or idiopathic short stature. In contrast, there are only four cases in the literature of upstream deletions that remove regulatory elements. Although duplications flanking the SHOX gene have also been reported, their pathogenicity is more difficult to establish. To further evaluate the role of flanking copy number variants in SHOX-related disorders, we describe nine additional patients from a large SHOX diagnostic cohort. Results The nine cases presented here include five with duplications (two upstream of SHOX and three downstream), one with a downstream triplication and three with upstream deletions. Two of the deletions remove a single conserved non-coding element (CNE-3) while the third does not remove any known regulatory element but is just 4 kb upstream of SHOX, and the deleted region may be important in limb bud development. We also describe six families with novel sequence gains flanking SHOX. Three families had increased dosage of a proposed regulatory element approximately 380 kb downstream of SHOX (X:970,000), including one family with the first ever reported triplication of this region. One family had two in cis downstream duplications co-segregating with LWD, and the two others had a duplication of just the upstream SHOX regulatory element CNE-5. Conclusions This study further extends our knowledge of the range of variants that may potentially cause SHOX-related phenotypes and may aid in determining the clinical significance of similar variants.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Leandro de Araújo Lima ◽  
Ana Cecília Feio-dos-Santos ◽  
Sintia Iole Belangero ◽  
Ary Gadelha ◽  
Rodrigo Affonseca Bressan ◽  
...  

Abstract Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.


PEDIATRICS ◽  
2012 ◽  
Vol 129 (4) ◽  
pp. 755-763 ◽  
Author(s):  
Abigail E. Southard ◽  
Lisa J. Edelmann ◽  
Bruce D. Gelb

2018 ◽  
Author(s):  
Sheng Wang ◽  
Jeffrey D. Mandelll ◽  
Yogesh Kumarr ◽  
Nawei Sunn ◽  
Montana T. Morris ◽  
...  

Author(s):  
Jessica Kang ◽  
Chien Nan Lee ◽  
Yi-Ning Su ◽  
Ming-Wei Lin ◽  
Yi-Yun Tai ◽  
...  

Objective: The prenatal genetic counseling of fetus diagnosed with the 15q11.2 copy number variant (CNV) involving the BP1-BP2 region has been difficult due to limited information and controversial opinion on prognosis. Design: Case series. Setting: This study uses data from National Taiwan University Hospital. Sample: Data of 36 pregnant women who underwent prenatal microarray analysis from 2012 to 2017 and were assessed at National Taiwan University Hospital. Methods: Data were collected by reviewing patients’ medical record. Comparison of patient characteristics, prenatal ultrasound findings and postnatal outcomes between different cases involving the 15q11.2 BP1-BP2 region were presented. Main outcome measured: Postnatal prognosis. Results: Out of the 36 patients diagnosed with CNVs involving the BP1-BP2 region, 5 were diagnosed with microduplication and 31 with microdeletion. Abnormal ultrasound findings were recorded in 12 cases prenatally. De novo microduplications were observed in 25% of the cases and microdeletions were found in 14%. Amongst the cases, 10 pregnant women received termination of pregnancy and 26 gave birth to healthy individuals (27 babies in total). Conclusion: The prognoses of 15q11.2 CNVs were controversial and recent studies have revealed its connection with developmental delay and autism. In our study, no obvious developmental delay or neurological disorders were detected postnatally in the 1 case of 15q11.2 microduplication and 25 cases of microdeletion.


Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


2018 ◽  
pp. 84-95
Author(s):  
Elliott Rees ◽  
George Kirov

Copy number variants (CNVs) are deletions, duplications, inversions, or translocations of large DNA segments. They can play a significant role in human disease. Thirteen CNVs have received strong statistical support for involvement in schizophrenia. They are all rare in cases (<1%), much rarer among controls, and have high odds ratios (ORs) for causing disease. The same CNVs also increase risk for autism spectrum disorders, developmental delay, and medical/physical comorbidities. The penetrance of these CNVs for any disorder is relatively high, ranging from 10% for 15q11.2 deletions to nearly 100% for deletions at 22q11.2. Strong selection pressure operates against carriers of these CNVs. Most of these are formed by non-allelic homologous recombination (NAHR), which leads to high mutation rates, thus maintaining the rates of these CNVs in the general population, despite the strong selection forces.


Sign in / Sign up

Export Citation Format

Share Document