scholarly journals Ablation of the FACIT collagen XII disturbs musculoskeletal ECM organization and causes patella dislocation and myopathy

2021 ◽  
Author(s):  
Mengjie Zhu ◽  
Fabian Metzen ◽  
Janina Betz ◽  
Mark Hopkinson ◽  
Andrew A Pitsillides ◽  
...  

Collagen XII, belonging to the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The trimeric molecule consists of three N-terminal noncollagenous NC3 domains joined by disulfide bonds followed by a short interrupted collagen triple helix at the C-terminus. Collagen XII is expressed widely in the musculoskeletal system and mutations in the COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome, which is associated with skeletal abnormalities and muscle weakness. Our study defines the role of collagen XII in patella development using the Col12a1-/- mouse model. Deficiency in Col12a1 expression causes malformed facies patellaris femoris grooves at an early stage, which leads to patella subluxation and growth retardation. Due to the patella subluxation, more muscle fibers with centralized nuclei occur in the quadriceps than in the gastrocnemius muscles indicating a local effect. To further understand the role of collagen XII in the skeletal tissues single cell RNAseq (scRNA-seq) was performed. Comparison of the gene expression in the tenocyte cell sub-population of wild type and Col12a1-/- mice showed that several matrix genes are altered. Finally, we reinvestigated collagen XII deficient patients and observed a patella instability.

2021 ◽  
Vol 22 (5) ◽  
pp. 2426
Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eder Gambeta ◽  
Maria A. Gandini ◽  
Ivana A. Souza ◽  
Laurent Ferron ◽  
Gerald W. Zamponi

AbstractA novel missense mutation in the CACNA1A gene that encodes the pore forming α1 subunit of the CaV2.1 voltage-gated calcium channel was identified in a patient with trigeminal neuralgia. This mutation leads to a substitution of proline 2455 by histidine (P2455H) in the distal C-terminus region of the channel. Due to the well characterized role of this channel in neurotransmitter release, our aim was to characterize the biophysical properties of the P2455H variant in heterologously expressed CaV2.1 channels. Whole-cell patch clamp recordings of wild type and mutant CaV2.1 channels expressed in tsA-201 cells reveal that the mutation mediates a depolarizing shift in the voltage-dependence of activation and inactivation. Moreover, the P2455H mutant strongly reduced calcium-dependent inactivation of the channel that is consistent with an overall gain of function. Hence, the P2455H CaV2.1 missense mutation alters the gating properties of the channel, suggesting that associated changes in CaV2.1-dependent synaptic communication in the trigeminal system may contribute to the development of trigeminal neuralgia.


2004 ◽  
Vol 186 (16) ◽  
pp. 5366-5375 ◽  
Author(s):  
Peter Burghout ◽  
Frank Beckers ◽  
Emmie de Wit ◽  
Ria van Boxtel ◽  
Guy R. Cornelis ◽  
...  

ABSTRACT The YscC secretin is a major component of the type III protein secretion system of Yersinia enterocolitica and forms an oligomeric structure in the outer membrane. In a mutant lacking the outer membrane lipoprotein YscW, secretion is strongly reduced, and it has been proposed that YscW plays a role in the biogenesis of the secretin. To study the interaction between the secretin and this putative pilot protein, YscC and YscW were produced in trans in a Y. enterocolitica strain lacking all other components of the secretion machinery. YscW expression increased the yield of oligomeric YscC and was required for its outer membrane localization, confirming the function of YscW as a pilot protein. Whereas the pilot-binding site of other members of the secretin family has been identified in the C terminus, a truncated YscC derivative lacking the C-terminal 96 amino acid residues was functional and stabilized by YscW. Pulse-chase experiments revealed that ∼30 min were required before YscC oligomerization was completed. In the absence of YscW, oligomerization was delayed and the yield of YscC oligomers was strongly reduced. An unlipidated form of the YscW protein was not functional, although it still interacted with the secretin and caused mislocalization of YscC even in the presence of wild-type YscW. Hence, YscW interacts with the unassembled YscC protein and facilitates efficient oligomerization, likely at the outer membrane.


2004 ◽  
Vol 78 (1) ◽  
pp. 257-265 ◽  
Author(s):  
Patricia Szajner ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39°C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.


1994 ◽  
Vol 14 (8) ◽  
pp. 5182-5191
Author(s):  
P Wang ◽  
M Reed ◽  
Y Wang ◽  
G Mayr ◽  
J E Stenger ◽  
...  

Wild-type p53 forms tetramers and multiples of tetramers. Friedman et al. (P. N. Friedman, X. B. Chen, J. Bargonetti, and C. Prives, Proc. Natl. Acad. Sci. USA 90:3319-3323, 1993) have reported that human p53 behaves as a larger molecule during gel filtration than it does during sucrose gradient sedimentation. These differences argue that wild-type p53 has a nonglobular shape. To identify structural and oligomerization domains in p53, we have investigated the physical properties of purified segments of p53. The central, specific DNA-binding domain within murine amino acids 80 to 320 and human amino acids 83 to 323 behaves predominantly as monomers during analysis by sedimentation, gel filtration, and gel electrophoresis. This consistent behavior argues that the central region of p53 is globular in shape. Under appropriate conditions, however, this segment can form transient oligomers without apparent preference for a single oligomeric structure. This region does not enhance transformation by other oncogenes. The biological implications of transient oligomerization by this central segment, therefore, remain to be demonstrated. Like wild-type p53, the C terminus, consisting of murine amino acids 280 to 390 and human amino acids 283 to 393, behaves anomalously during gel filtration and apparently has a nonglobular shape. Within this region, murine amino acids 315 to 350 and human amino acids 323 to 355 are sufficient for assembly of stable tetramers. The finding that murine amino acids 315 to 360 enhance transformation by other oncogenes strongly supports the role of p53 tetramerization in oncogenesis. Amino acids 330 to 390 of murine p53 and amino acids 340 to 393 of human p53, which have been implicated by Sturzbecher et al. in tetramerization (H.-W. Sturzbecher, R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins, Oncogene 7:1513-1523, 1992), do not form stable tetramers under our conditions. Our findings indicate that p53 has at least two autonomous oligomerization domains: a strong tetramerization domain in its C-terminal region and a weaker oligomerization domain in the central DNA binding region of p53. Together, these domains account for the formation of tetramers and multiples of tetramers by wild-type p53. The tetramerization domain is the major determinant of the dominant negative phenotype leading to transformation by mutant p53s.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Narayani Nagarajan ◽  
Shinichi Oka ◽  
Gihoon NAH ◽  
Peiyong Zhai ◽  
Wataru Mizushima ◽  
...  

Thioredoxin 1 (Trx1) is an oxidoreductase that reduces proteins with disulfide bonds. Trx1 also functions as a transnitrosylase, but this occurs only when Trx1 is oxidized at Cys32 and Cys35. In cultured cardiomyocytes (CMs), glucose deprivation (GD) induces oxidation of Trx1 and Trx1 is transnitrosylated. Thus, we hypothesized that Trx1 promotes GD-induced autophagy through its function as a transnitrosylase rather than as an oxidoreductase. GD-induced autophagy, evaluated by counting GFP-LC3 puncta, was inhibited in the presence of the transnitrosylation-defective Trx1C73S mutant (GFP-LC3 puncta per cell under GD; control: 38; Trx1 knockdown: 2*; Trx1C73S: 17*; p<0.05 vs. control), suggesting that Cys73 in Trx1 plays an important role in mediating GD-induced autophagy. Mass spectrometric analyses and biochemical assays showed that Atg7, an essential autophagy regulator, is a Trx1 target and that Trx1 binds to Atg7 via Cys454 and Cys458 in Atg7, thereby transnitrosylating Atg7 at Cys294 and Cys402. Trx1C73S knock-in (Trx1C73S-KI) promoted coronary ligation (CL)-induced myocardial infarction (MI) (MI size/area at risk (AAR) (%); Wild type (WT): 21; Trx1C73S-KI: 42*; p<0.05 vs. WT), in association with reduced S-nitrosylation of Atg7. To test the role of S-nitrosylation of Atg7 in mediating autophagy, we transduced an S-nitrosylation defective Atg7 mutant (Atg7CC294/402SS) into adult cardiomyocytes isolated from cardiac-specific Atg7 knockout mice. Compared to intact Atg7, Atg7CC294/402SS was less able to induce autophagy, as evidenced by reduced LC-3II formation (relative LC3-II; intact Atg7: 1.0; Atg7CC294/402SS: 0.81*; p<0.05). Atg7C402S, but not Atg7C294S, knock-in exacerbated CL-induced MI (MI size/AAR (%); WT: 32; Atg7C402-KI: 42*; p<0.05 vs. WT). These results suggest that Trx1 protects the heart against MI by mediating autophagy via S-nitrosylation of Atg7 at Cys402.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1604-1604
Author(s):  
HoangDinh Huynh ◽  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1604 Previously we identified IGFBP2 as an extrinsic factor that supports ex vivo expansion of hematopoietic stem cells (HSCs). The role of IGFBP2 in HSCs and cancer is very intriguing. IGFBP2 can bind to insulin-like growth factor (IGF) ligands and displays IGF-dependent growth inhibitory effects on many cell types. On the other hand, IGFBP2 is capable of stimulating growth of certain cancer cells, and is overexpressed in many cancer patients and its expression is correlated with cancer progression. Here we sought to study the role of IGFBP2 in regulation of the activity of normal HSCs. We showed that IGFBP2 was expressed in differentiated hematopoietic cells and bone marrow stroma but not in HSCs. Consistent with its gene expression pattern, IGFBP2-/- HSCs had similar repopulation activity as their wild-type counterparts. By contrast, when we transplanted HSCs into IGFBP2-/- or wild-type recipient mice, we found decreased in vivo repopulation of HSCs in primary and secondary transplanted IGFBP2-/- recipients, suggesting that the environmental IGFBP2 positively supports HSC activity. Further co-culture of HSCs with IGFBP2-/- or wild-type bone marrow stromal cells indicated that IGFBP2 produced by bone marrow stroma indeed supports HSC expansion. Consistently, HSCs in IGFBP2-/- mice showed decreased frequency and cell cycling, and had upregulated expression of cell cycle inhibitors of p21, p16, and p19. To determine whether IGFBP2's effect on HSCs depends on IGF signaling, we compared the repopulation of donor cells deficient for the IGF type I receptor in wild-type and IGFBP2-/- recipients. These HSCs that are defective in IGF signaling still have decreased repopulation in IGFBP2-/- recipients, suggesting that the environmental effect of IGFBP2 on HSCs is independent of IGF signaling. To identify the functional domain of IGFBP2 in regulation of HSC activity, we constructed IGFBP2 with mutated RGD domain or deleted c-terminus and used the mutant IGFBP2 proteins in ex vivo culture of HSCs. We found that the c-terminus of IGFBP2 is essential to support HSC activity. We are currently in the process of identifying the potential receptor of IGFBP2 on HSCs. In summary, we found that IGFBP2 supports the cycling of normal HSCs, and this effect is independent of IGF signaling. Our study is important in revealing the relationship among environmental cues and cell fates of stem cells and opens up a new avenue in investigation of the roles of IGFBP2 in stem cells and cancer. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 372 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Alfonso De Simone ◽  
Luigi Vitagliano ◽  
Rita Berisio

1992 ◽  
Vol 288 (1) ◽  
pp. 131-135 ◽  
Author(s):  
J F Bateman ◽  
I Moeller ◽  
M Hannagan ◽  
D Chan ◽  
W G Cole

Type I collagen alpha 1(I) glycine to serine substitutions, resulting from G-to-A mutations, were defined in three cases of osteogenesis imperfecta (OI). The Gly substitutions displayed a gradient of phenotypic severity according to the location of the mutation in the collagen triple helix. The most C-terminal of these, Gly565 to Ser, led to the lethal perinatal (type II) form of OI, whereas the more N-terminal mutations, Gly415 and Gly352 to Ser, led to severe OI (type III/IV) and moderate OI (type IVB) respectively. These data support the notion that glycine substitutions towards the C-terminus of the alpha 1(I) or alpha 2(I) chains will be more clinically severe than those towards the N-terminus. This results from the more disruptive effect of the mutations at the C-terminus on helix initiation and C- and N-terminal helix directional propagation. This generalization must be modified by considering the nature of the glycine substitution and the surrounding amino acid sequence, since the helix is composed of subdomains of differing stability which will affect the ability of helix re-nucleation and propagation.


2000 ◽  
Vol 74 (23) ◽  
pp. 11388-11393 ◽  
Author(s):  
Peggy P. Li ◽  
Akira Nakanishi ◽  
Mary A. Tran ◽  
Adler M. Salazar ◽  
Robert C. Liddington ◽  
...  

ABSTRACT We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants—C9A, C49A, C87A, C104A, C207S, C254A, and C267L—retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca2+-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca2+ ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.


Sign in / Sign up

Export Citation Format

Share Document