scholarly journals Adjunctive inhibition of the integrated stress response pathway accelerates bacterial clearance in a mouse model of tuberculosis

2022 ◽  
Author(s):  
Stefanie Krug ◽  
Pankaj Prasad ◽  
Shiqi Xiao ◽  
Shichun Lun ◽  
Camilo A. Ruiz-Bedoya ◽  
...  

Tuberculosis (TB) is a devastating infectious disease that continues to cause millions of human deaths every year. Even though most cases of TB can be cured with a 6-month antibiotic combination therapy, these long treatment durations have led to the emergence of multi-drug resistance and pose a major hurdle to global TB control. Despite numerous advances in TB drug development, a substantially shortened treatment time has yet to be achieved. Given the rise in antibiotic resistance, an alternative strategy to the direct targeting of M. tuberculosis (M.tb) is the development of host-directed therapies (HDTs) that promote bacterial clearance and/or lung health when given adjunctive to standard TB antibiotics. We recently discovered that a small molecule inhibitor of the Integrated Stress Response (ISR), which is abnormally activated in TB and associated with the formation of necrotic granulomas, reduced M.tb numbers and lung inflammation in mice. Here, we evaluated the therapeutic potential of adjunctive ISR inhibition in the context of standard TB therapy. Throughout the course of treatment, ISR inhibition robustly lowered bacterial burdens compared to standard TB therapy alone and accelerated the time-to-sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISR inhibition tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential of shortening TB treatment durations and improving lung health.

2019 ◽  
Vol 20 (11) ◽  
pp. 2761 ◽  
Author(s):  
Toshiyuki Nakagawa ◽  
Kazunori Ohta

The initiation of protein synthesis is suppressed under several stress conditions, inducing phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4, also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents cognitive impairments in a mouse model of AD.


2020 ◽  
Author(s):  
Megan Maurano ◽  
Jessica M. Snyder ◽  
Caitlin Connelly ◽  
Jorge Henao-Mejia ◽  
Carmela Sidrauski ◽  
...  

SummaryMutations in ADAR, the gene that encodes the ADAR1 RNA deaminase, cause numerous human diseases, including Aicardi-Goutières Syndrome (AGS). ADAR1 is an essential negative regulator of the RNA sensor MDA5, and loss of ADAR1 function triggers inappropriate activation of MDA5 by self-RNAs. However, the mechanisms of MDA5-dependent disease pathogenesis in vivo remain unknown. Here, we introduce a knockin mouse that models the most common ADAR AGS mutation in humans. These Adar-mutant mice develop lethal disease that requires MDA5, the RIG-I-like receptor LGP2, type I interferons, and the eIF2α kinase PKR. We show that a small molecule inhibitor of the integrated stress response (ISR) that acts downstream of eIF2α phosphorylation prevents immunopathology and rescues the mice from mortality. These findings place PKR and the ISR as central components of immunopathology in vivo and identify new therapeutic targets for treatment of human diseases associated with the ADAR1-MDA5 axis.


2020 ◽  
Vol 21 (17) ◽  
pp. 6088
Author(s):  
Asier Ruiz ◽  
Jone Zuazo ◽  
Carolina Ortiz-Sanz ◽  
Celia Luchena ◽  
Carlos Matute ◽  
...  

Sephin1 is a derivative of guanabenz that inhibits the dephosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α) and therefore may enhance the integrated stress response (ISR), an adaptive mechanism against different cellular stresses, such as accumulation of misfolded proteins. Unlike guanabenz, Sephin1 provides neuroprotection without adverse effects on the α2-adrenergic system and therefore it is considered a promising pharmacological therapeutic tool. Here, we have studied the effects of Sephin1 on N-methyl-D-aspartic acid (NMDA) receptor signaling which may modulate the ISR and contribute to excitotoxic neuronal loss in several neurodegenerative conditions. Time-course analysis of peIF2α levels after NMDA receptor overactivation showed a delayed dephosphorylation that occurred in the absence of activating transcription factor 4 (ATF4) and therefore independently of the ISR, in contrast to that observed during endoplasmic reticulum (ER) stress induced by tunicamycin and thapsigargin. Similar to guanabenz, Sephin1 completely blocked NMDA-induced neuronal death and was ineffective against AMPA-induced excitotoxicity, whereas it did not protect from experimental ER stress. Interestingly, both guanabenz and Sephin1 partially but significantly reduced NMDA-induced cytosolic Ca2+ increase, leading to a complete inhibition of subsequent calpain activation. We conclude that Sephin1 and guanabenz share common strong anti-excitotoxic properties with therapeutic potential unrelated to the ISR.


2020 ◽  
Vol 37 (11) ◽  
pp. 1370-1380 ◽  
Author(s):  
Karen Krukowski ◽  
Amber Nolan ◽  
Elma S. Frias ◽  
Katherine Grue ◽  
McKenna Becker ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


2021 ◽  
pp. 1-14
Author(s):  
Hsiao-Sang Chu ◽  
Cornelia Peterson ◽  
Albert Jun ◽  
James Foster

Sign in / Sign up

Export Citation Format

Share Document