scholarly journals PKR and the Integrated Stress Response drive immunopathology caused by ADAR1 mutation

2020 ◽  
Author(s):  
Megan Maurano ◽  
Jessica M. Snyder ◽  
Caitlin Connelly ◽  
Jorge Henao-Mejia ◽  
Carmela Sidrauski ◽  
...  

SummaryMutations in ADAR, the gene that encodes the ADAR1 RNA deaminase, cause numerous human diseases, including Aicardi-Goutières Syndrome (AGS). ADAR1 is an essential negative regulator of the RNA sensor MDA5, and loss of ADAR1 function triggers inappropriate activation of MDA5 by self-RNAs. However, the mechanisms of MDA5-dependent disease pathogenesis in vivo remain unknown. Here, we introduce a knockin mouse that models the most common ADAR AGS mutation in humans. These Adar-mutant mice develop lethal disease that requires MDA5, the RIG-I-like receptor LGP2, type I interferons, and the eIF2α kinase PKR. We show that a small molecule inhibitor of the integrated stress response (ISR) that acts downstream of eIF2α phosphorylation prevents immunopathology and rescues the mice from mortality. These findings place PKR and the ISR as central components of immunopathology in vivo and identify new therapeutic targets for treatment of human diseases associated with the ADAR1-MDA5 axis.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


2018 ◽  
Author(s):  
Bidisha Bhattacharya ◽  
Shiqi Xiao ◽  
Sujoy Chatterjee ◽  
Michael Urbanowski ◽  
Alvaro Ordonez ◽  
...  

Necrosis in the tuberculous granuloma is a hallmark of tuberculosis that enables pathogen survival and transmission. Susceptibility to tuberculosis and several other intracellular bacteria is controlled by a mouse genetic locus, sst1, and mice carrying the sst1-suscepible (sst1S) genotype develop necrotic inflammatory lung lesions, similar to human TB granulomas. Our previous work established that increased disease severity in sst1S mice reflects dysfunctional macrophage effector or tolerance mechanisms, but the molecular mechanisms have remained unclear. Here we demonstrate that sst1S macrophages develop aberrant, biphasic responses to TNF characterized by super-induction of stress and type I interferon pathways after prolonged TNF stimulation with this late-stage response being initiated by oxidative stress and Myc activation and driven via a JNK - IFNβ - PKR circuit. This circuit leads to induction of the integrated stress response (ISR) mediated by eIF2α phosphorylation and the subsequent hyper-induction of ATF3 and ISR-target genes Chac1, Trib3, Ddit4. The administration of ISRIB, a small molecule inhibitor of the ISR, blocked the development of necrosis in lung granulomas of M. tuberculosis-infected sst1S mice and concomitantly reduced the bacterial burden revealing that induction of the ISR and the locked-in state of escalating stress driven by type I IFN pathway in sst1S macrophages plays a causal role in the development of necrosis. Our data support a generalizable paradigm in intracellular pathogen-host interactions wherein host susceptibility emerges within inflammatory tissue due to imbalanced macrophage responses to growth, differentiation, activation and stress stimuli. Successful pathogens such as M. tuberculosis may exploit this aberrant response in susceptible hosts to induce necrotic lesions that favor long-term pathogen survival and transmission. Interruption of the aberrant stress response with inhibitors such as ISRIB may offer novel therapeutic strategies.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Wu ◽  
Caoqi Lei ◽  
Tian Xia ◽  
Xuan Zhong ◽  
Qing Yang ◽  
...  

Abstract TIR domain-containing adaptor inducing interferon-β (TRIF) is an essential adaptor protein required for innate immune responses mediated by Toll-like receptor (TLR) 3- and TLR4. Here we identify USP19 as a negative regulator of TLR3/4-mediated signaling. USP19 deficiency increases the production of type I interferons (IFN) and proinflammatory cytokines induced by poly(I:C) or LPS in vitro and in vivo. Usp19-/- mice have more serious inflammation after poly(I:C) or LPS treatment, and are more susceptible to inflammatory damages and death following Salmonella typhimurium infection. Mechanistically, USP19 interacts with TRIF and catalyzes the removal of TRIF K27-linked polyubiquitin moieties, thereby impairing the recruitment of TRIF to TLR3/4. In addition, the RING E3 ubiquitin ligase complex Cullin-3-Rbx1-KCTD10 catalyzes K27-linked polyubiquitination of TRIF at K523, and deficiency of this complex inhibits TLR3/4-mediated innate immune signaling. Our findings thus reveal TRIF K27-linked polyubiquitination and deubiquitination as a critical regulatory mechanism of TLR3/4-mediated innate immune responses.


2021 ◽  
Author(s):  
Shaobo Xiao ◽  
Xun Xiao ◽  
Mohan Wang ◽  
Wenkai Zhao ◽  
Puxian Fang ◽  
...  

The production of type I interferons (IFN-α/β) requires strict control to avoid excessive activation during viral infections. The binding of interferon regulatory factor 3 (IRF3) to the IFN-β promoter region in the nucleus is essential for IFN-β transcription; however, whether nuclear factors have important negative-regulatory roles in this process is largely unknown. By screening for IRF3-interacting partners in the nucleus, we identified DEAD-box RNA helicase 18 (DDX18) as an important negative regulator of intranuclear IRF3. Overexpression of DDX18 suppressed virus- and IRF3-induced IFN-β production, whereas knockdown of DDX18 expression or knockout of the DDX18 gene had opposite effects. Mechanistically, DDX18 interacts with IRF3 and decreases the binding of IRF3 to the IFN-β promoter after viral infection. DDX18 knockdown mice (Ddx18+/-) further demonstrated that DDX18 suppressed antiviral innate immunity in vivo. Thus, despite many members of the DDX family act as important positive regulators in the cytoplasm, DDX18 plays a unique "braking" role in balancing virus-induced type I IFN production.


2019 ◽  
Vol 216 (6) ◽  
pp. 1396-1410 ◽  
Author(s):  
Fei Ning ◽  
Xiaoyu Li ◽  
Li Yu ◽  
Bin Zhang ◽  
Yuna Zhao ◽  
...  

Induction of type I interferons (IFNs) is critical for eliciting competent immune responses, especially antiviral immunity. However, uncontrolled IFN production contributes to pathogenesis of autoimmune and inflammatory diseases. We found that transcription factor Hes1 suppressed production of type I IFNs and expression of IFN-stimulated genes. Functionally, Hes1-deficient mice displayed a heightened IFN signature in vivo, mounted enhanced resistance against encephalomyocarditis virus infection, and showed signs of exacerbated experimental lupus nephritis. Mechanistically, Hes1 did not suppress IFNs via direct transcriptional repression of IFN-encoding genes. Instead, Hes1 attenuated activation of TLR upstream signaling by inhibition of an adaptor molecule, WDFY1. Genome-wide assessment of Hes1 occupancy revealed that suppression of WDFY1 was secondary to direct binding and thus enhancement of expression of VEGF-C by Hes1, making Vegfc a rare example of an Hes1 positively regulated gene. In summary, these results identified Hes1 as a homeostatic negative regulator of type I IFNs for the maintenance of immune balance in the context of antiviral immunity and autoimmune diseases.


2019 ◽  
Author(s):  
Xiaoyan Guo ◽  
Giovanni Aviles ◽  
Yi Liu ◽  
Ruilin Tian ◽  
Bret A. Unger ◽  
...  

AbstractIn mammalian cells, mitochondrial dysfunction triggers the integrated stress response (ISR), in which eIF2α phosphorylation upregulates the transcription factor ATF4. However, how mitochondrial stress is relayed to the ISR is unknown. We found that HRI is the eIF2α kinase necessary and sufficient for this relay. Using an unbiased CRISPRi screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease, and DELE1, a little-characterized protein we found to be associated with the inner mitochondrial membrane. Mitochondrial stress stimulates the OMA1-dependent cleavage of DELE1, leading to its accumulation in the cytosol, where it interacts with HRI and activates its eIF2α kinase activity. Blockade of the OMA1-DELE1-HRI pathway is beneficial during some, but not all types of mitochondrial stress, and leads to an alternative response that induces specific molecular chaperones. Therefore, this pathway is a potential therapeutic target enabling fine-tuning of the ISR for beneficial outcomes in diseases involving mitochondrial dysfunction.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhou Yu ◽  
Xuelian Li ◽  
Mingjin Yang ◽  
Jiaying Huang ◽  
Qian Fang ◽  
...  

AbstractSensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.


2020 ◽  
Vol 117 (20) ◽  
pp. 10935-10945 ◽  
Author(s):  
Shanta Karki ◽  
Kathrina Castillo ◽  
Zhaolan Ding ◽  
Olivia Kerr ◽  
Teresa M. Lamb ◽  
...  

The circadian clock in eukaryotes controls transcriptional and posttranscriptional events, including regulation of the levels and phosphorylation state of translation factors. However, the mechanisms underlying clock control of translation initiation, and the impact of this potential regulation on rhythmic protein synthesis, were not known. We show that inhibitory phosphorylation of eIF2α (P-eIF2α), a conserved translation initiation factor, is clock controlled in Neurospora crassa, peaking during the subjective day. Cycling P-eIF2α levels required rhythmic activation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2), and rhythmic activation of CPC-3 was abolished under conditions in which the levels of charged tRNAs were altered. Clock-controlled accumulation of P-eIF2α led to reduced translation during the day in vitro and was necessary for the rhythmic synthesis of select proteins in vivo. Finally, loss of rhythmic P-eIF2α levels led to reduced linear growth rates, supporting the idea that partitioning translation to specific times of day provides a growth advantage to the organism. Together, these results reveal a fundamental mechanism by which the clock regulates rhythmic protein production, and provide key insights into how rhythmic translation, cellular energy, stress, and nutrient metabolism are linked through the levels of charged versus uncharged tRNAs.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Teslin S. Sandstrom ◽  
Nischal Ranganath ◽  
Stephanie C. Burke Schinkel ◽  
Syim Salahuddin ◽  
Oussama Meziane ◽  
...  

ABSTRACT The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.


2021 ◽  
Vol 118 (36) ◽  
pp. e2105390118 ◽  
Author(s):  
Keke Liang ◽  
Evan R. Abt ◽  
Thuc M. Le ◽  
Arthur Cho ◽  
Amanda M. Dann ◽  
...  

Type I interferons (IFNs) are critical effectors of emerging cancer immunotherapies designed to activate pattern recognition receptors (PRRs). A challenge in the clinical translation of these agents is the lack of noninvasive pharmacodynamic biomarkers that indicate increased intratumoral IFN signaling following PRR activation. Positron emission tomography (PET) imaging enables the visualization of tissue metabolic activity, but whether IFN signaling–induced alterations in tumor cell metabolism can be detected using PET has not been investigated. We found that IFN signaling augments pancreatic ductal adenocarcinoma (PDAC) cell nucleotide metabolism via transcriptional induction of metabolism-associated genes including thymidine phosphorylase (TYMP). TYMP catalyzes the first step in the catabolism of thymidine, which competitively inhibits intratumoral accumulation of the nucleoside analog PET probe 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). Accordingly, IFN treatment up-regulates cancer cell [18F]FLT uptake in the presence of thymidine, and this effect is dependent upon TYMP expression. In vivo, genetic activation of stimulator of interferon genes (STING), a PRR highly expressed in PDAC, enhances the [18F]FLT avidity of xenograft tumors. Additionally, small molecule STING agonists trigger IFN signaling–dependent TYMP expression in PDAC cells and increase tumor [18F]FLT uptake in vivo following systemic treatment. These findings indicate that [18F]FLT accumulation in tumors is sensitive to IFN signaling and that [18F]FLT PET may serve as a pharmacodynamic biomarker for STING agonist–based therapies in PDAC and possibly other malignancies characterized by elevated STING expression.


Sign in / Sign up

Export Citation Format

Share Document