scholarly journals New insights on the role of HCN in root hair elongation through single cell proteomics

2022 ◽  
Author(s):  
Irene García ◽  
Lucía Arenas-Alfonseca ◽  
Luis C. Romero ◽  
Masashi Yamada

Root hairs are specialized structures involved in water and nutrient uptake by plants. They elongate from epidermal cells following a complex developmental program. β-cyanoalanine synthase (CAS), which is mainly involved in hydrogen cyanide (HCN) detoxification in Arabidopsis thaliana, plays a role in root hair elongation, as evidenced by the fact that cas-c1 mutants show a severe defect in root hair shape. In addition to root hairs, CAS C1 is expressed in the quiescent center and meristem. However, the cas-c1 mutation has no visible effect on either tissue, in both control and nutrient-deprivation conditions. To identify its role in root hair formation, we conducted single cell proteomics analysis by isolating root hair cells using Fluorescence-Activated Cell Sorting (FACS) from wild type and cas-c1 mutants. We also analyzed the presence of S-cyanylation, a protein post-translational modification (PTM) mediated by HCN and affecting cysteine residues and protein activity, in proteins of wild type and cas-c1 mutants. We found that several proteins involved in root hair development, related to the receptor kinase FERONIA signaling and to DNA methylation, are modified by this new post-translational modification.

2021 ◽  
Vol 118 (51) ◽  
pp. e2110004118
Author(s):  
Yuping Qiu ◽  
Ran Tao ◽  
Ying Feng ◽  
Zhina Xiao ◽  
Dan Zhang ◽  
...  

The alternating cell specifications of root epidermis to form hair cells or nonhair cells in Arabidopsis are determined by the expression level of GL2, which is activated by an MYB–bHLH–WD40 (WER–GL3–TTG1) transcriptional complex. The phytohormone ethylene (ET) has a unique effect of inducing N-position epidermal cells to form root hairs. However, the molecular mechanisms underlying ET-induced ectopic root hair development remain enigmatic. Here, we show that ET promotes ectopic root hair formation through down-regulation of GL2 expression. ET-activated transcription factors EIN3 and its homolog EIL1 mediate this regulation. Molecular and biochemical analyses further revealed that EIN3 physically interacts with TTG1 and interferes with the interaction between TTG1 and GL3, resulting in reduced activation of GL2 by the WER–GL3–TTG1 complex. Furthermore, we found through genetic analysis that the master regulator of root hair elongation, RSL4, which is directly activated by EIN3, also participates in ET-induced ectopic root hair development. RSL4 negatively regulates the expression of GL2, likely through a mechanism similar to that of EIN3. Therefore, our work reveals that EIN3 may inhibit gene expression by affecting the formation of transcription-activating protein complexes and suggests an unexpected mutual inhibition between the hair elongation factor, RSL4, and the hair specification factor, GL2. Overall, this study provides a molecular framework for the integration of ET signaling and intrinsic root hair development pathway in modulating root epidermal cell specification.


2021 ◽  
Author(s):  
Steffen Schlüter ◽  
Eva Lippold ◽  
Maxime Phalempin ◽  
Doris Vetterlein

<p>Root hairs are one root trait among many which enables plants to adapt to environmental conditions. How different traits are coordinated and whether some are mutually exclusive is currently poorly understood. Comparing a root hair defective mutant with its corresponding wild-type we explored if and how the mutant exhibited root growth adaption strategies and as to how far this depended on the substrate.</p><p>Zea mays root hair defective mutant (rth3) and the corresponding wild-type siblings were grown on two substrates with contrasting texture and hence nutrient mobility. Root system architecture was investigated over time using repeated X-ray computed tomography.</p><p>There was no plastic adaption of root system architecture to the lack of root hairs, which resulted in lower uptake in particular in the substrate with low P mobility. The function of the root hairs for anchoring did not result in different depth profiles of the root length density between genotypes. Both maize genotypes showed a marked response to substrate. This was well reflected in the spatiotemporal development of rhizosphere volume fraction but especially in the strong response of root diameter to substrate, irrespective of genotype.</p><p>The most salient root plasticity trait was root diameter in response to substrate, whereas coping mechanisms for missing root hairs were less evident. Further experiments are required to elucidate whether observed differences can be explained by mechanical properties beyond mechanical impedance, root or microbiome ethylene production or differences in diffusion processes within the root or the rhizosphere.</p>


Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev192039
Author(s):  
Krishna Vasant Mutanwad ◽  
Isabella Zangl ◽  
Doris Lucyshyn

ABSTRACTRoot hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.


2021 ◽  
Vol 49 (2) ◽  
pp. 12258
Author(s):  
Xian HUANG ◽  
Tianzhi GONG ◽  
Mei LI ◽  
Cenghong HU ◽  
Dejian ZHANG ◽  
...  

Plant root hairs are cylindrical tubular projections from root epidermal cells. They increase the root surface area, which is important for the acquisition of water and nutrients, microbe interactions, and plant anchorage. The root hair specification, the effect of root hairs on nutrient acquisition and the mechanisms of nutrients (calcium, iron, magnesium, nitrogen, phosphorus, and potassium) that affect root hair development and growth were reviewed. The gene regulatory network on root hair specification in the plant kingdom was highlighted. More work is needed to clone the genes of additional root hair mutants and elucidate their roles, as well as undertaking reverse genetics and mutant complementation studies to add to the current knowledge of the signaling networks, which are involved in root hair development and growth regulated by nutrients.


2018 ◽  
Vol 49 (3) ◽  
pp. 164-172 ◽  
Author(s):  
N. F. Weber ◽  
I. Herrmann ◽  
F. Hochholdinger ◽  
U. Ludewig ◽  
G. Neumann

Abstract Here we describe the effects of the well-characterized, commercial plant growth-promoting rhizobacteria (PGPR) strain Pseudomonas sp. DSMZ 13134 (Proradix®) on plant growth, root morphology, and nutrient acquisition of a maize mutant (rth2) with impaired root hair production as compared with the corresponding wild type line, to study the importance of root hairs for the interaction of the PGPR strain with the host plant. The study was conducted in rhizobox culture with a sand–soil mixture and moderate P supply. Root hair development of the mutant was clearly impaired, reflected by slower growth and limited elongation as compared with the wild type line. This defect was compensated by more intense root growth and fine root production of the mutant which was particularly expressed after inoculation with Proradix®. By contrast, PGPR inoculation had no effect on root hair length. The beneficial effects of Proradix® on root growth were reflected in higher shoot contents of the macronutrients P and K. Interestingly, negative effects on shoot accumulation of the micronutrients Zn and Cu were observed. These findings support proposed PGPR effects of this strain but also show limitations that may be explained by additional strain-specific properties. Possible implications of these findings are discussed.


2021 ◽  
Author(s):  
Maria Marin ◽  
Deborah S Feeney ◽  
Lawrie K Brown ◽  
Muhammad Naveed ◽  
Siul Ruiz ◽  
...  

<p>Root hairs represent an attractive target for future crop breeding, to improve resource use efficiency and stress tolerance. Most studies investigating root hairs have focused on plant tolerance to phosphorus deficiency and rhizosheath formation under controlled conditions. However, data on the interplay between root hairs and open-field systems, under contrasting soils and climate conditions, are limited. Although root hairs and rhizosphere are assumed to play a key role in regulating plant water relations, their effect on plant water uptake has been rarely investigated. As such, this study aimed to experimentally elucidate some of the impacts that root hairs have on plant performance under field conditions and water deficit. A field experiment was set up in Scotland for two consecutive years, in 2017 (a typical year) and 2018 (the driest growing season ever recorded at this site), under different soil textures (i.e., clay loam vs. sandy loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length and density were used in the study. Measurements of root hair density, length and its correlation with rhizosheath weight highlighted trait robustness in the field under variable environmental conditions. Root hairs did not confer a notable advantage to barley under optimal conditions, but under soil water deficit root hairs enhanced plant water status and stress tolerance. This resulted in less negative leaf water potential and lower leaf abscisic acid concentration, while promoting shoot phosphorus accumulation. Specifically, minimum leaf water potential differed significantly (P = 0.021) between the wild type (-1.43 MPa) and its hairless mutant (-1.76 MPa) grown in clay loam, with the mutant exhibiting greater water stress. In agreement with leaf water potential measurements, at the peak of water stress, leaf abscisic acid concentration was significantly (P = 0.023) greater for the hairless mutant (394 ng g<sup>-1</sup>) than the wild type (250 ng g<sup>-1</sup>) grown in clay loam soil. Under water deficit conditions, in clay loam soil, shoot phosphorus accumulation in the wild type (2.49 mg P shoot<sup>-1</sup>) was over twice that in the hairless mutant (1.10 mg P shoot<sup>-1</sup>). Furthermore, the presence of root hairs did not decrease yield under optimal conditions, while root hairs enhanced yield stability under drought. While yield of the hairless mutant significantly (P = 0.012) decreased from 2017 to 2018 in both clay (-26%) and sandy (-33%) loam soils, no significant differences were found between years in the yield of the wild type. Therefore, selecting for beneficial root hair traits can enhance yield stability without diminishing yield potential, overcoming the breeder’s dilemma of trying to simultaneously enhance both productivity and resilience. To our knowledge, the present findings provide the first evidence of the effect of root hairs under drought in open field conditions (i.e., real agricultural system). Therefore, along with the well-recognized role for P uptake, maintenance or enhancement of root hairs can represent a key trait for breeding the next generation of crops for improved drought tolerance in relation to climate change.</p>


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1253-1260 ◽  
Author(s):  
J.D. Masucci ◽  
W.G. Rerie ◽  
D.R. Foreman ◽  
M. Zhang ◽  
M.E. Galway ◽  
...  

The role of the Arabidopsis homeobox gene, GLABRA 2 (GL2), in the development of the root epidermis has been investigated. The wild-type epidermis is composed of two cell types, root-hair cells and hairless cells, which are located at distinct positions within the root, implying that positional cues control cell-type differentiation. During the development of the root epidermis, the differentiating root-hair cells (trichoblasts) and the differentiating hairless cells (atrichoblasts) can be distinguished by their cytoplasmic density, vacuole formation, and extent of elongation. We have determined that mutations in the GL2 gene specifically alter the differentiation of the hairless epidermal cells, causing them to produce root hairs, which indicates that GL2 affects epidermal cell identity. Detailed analyses of these differentiating cells showed that, despite forming root hairs, they are similar to atrichoblasts of the wild type in their cytoplasmic characteristics, timing of vacuolation, and extent of cell elongation. The results of in situ nucleic acid hybridization and GUS reporter gene fusion studies show that the GL2 gene is preferentially expressed in the differentiating hairless cells of the wild type, during a period in which epidermal cell identity is believed to be established. These results indicate that the GL2 homeodomain protein normally regulates a subset of the processes that occur during the differentiation of hairless epidermal cells of the Arabidopsis root. Specifically, GL2 appears to act in a cell-position-dependent manner to suppress hair formation in differentiating hairless cells.


Author(s):  
Emma Burak ◽  
John N Quinton ◽  
Ian C Dodd

Abstract Background and Aims Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. Methods The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. Key Results Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. Conclusions When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.


2021 ◽  
Author(s):  
Michitaro Shibata ◽  
David S Favero ◽  
Ryu Takebayashi ◽  
Ayako Kawamura ◽  
Bart Rymen ◽  
...  

Root hair growth is tuned in response to the environment surrounding plants. While most of previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are down-regulated in this condition. On the other hand, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.


Sign in / Sign up

Export Citation Format

Share Document