scholarly journals Chromosome-level genome assembly and annotation of two lineages of the ant Cataglyphis hispanica: steppingstones towards genomic studies of hybridogenesis and thermal adaptation in desert ants

2022 ◽  
Author(s):  
Hugo Darras ◽  
Natalia de Souza Araujo ◽  
Lyam Baudry ◽  
Nadege Guiglielmoni ◽  
Pedro Lorite ◽  
...  

Cataglyphis are thermophilic ants that forage during the day when temperatures are highest and sometimes close to their critical thermal limit. Several Cataglyphis species have evolved unusual reproductive systems such as facultative queen parthenogenesis or social hybridogenesis, which have not yet been investigated in detail at the molecular level. We generated high-quality genome assemblies for two hybridogenetic lineages of the Iberian ant Cataglyphis hispanica using long-read Nanopore sequencing and exploited chromosome conformation capture (3C) sequencing to assemble contigs into 26 and 27 chromosomes, respectively. Males of one lineage were karyotyped to confirm the number of chromosomes inferred from 3C data. We obtained transcriptomic data to assist gene annotation and built custom repeat libraries for each of the two assemblies. Comparative analyses with 19 other published ant genomes were also conducted. These new genomic resources pave the way for exploring the genetic mechanisms underlying the remarkable thermal adaptation and the molecular mechanisms associated with transitions between different genetic systems characteristics of the ant genus Cataglyphis.

2020 ◽  
Vol 33 (5) ◽  
pp. 718-720
Author(s):  
Karthi Natesan ◽  
Ji Yeon Park ◽  
Cheol-Woo Kim ◽  
Dong Suk Park ◽  
Young-Seok Kwon ◽  
...  

Peronospora destructor is an obligate biotrophic oomycete that causes downy mildew on onion (Allium cepa). Onion is an important crop worldwide, but its production is affected by this pathogen. We sequenced the genome of P. destructor using the PacBio sequencing platform, and de novo assembly resulted in 74 contigs with a total contig size of 29.3 Mb and 48.48% GC content. Here, we report the first high-quality genome sequence of P. destructor and its comparison with the genome assemblies of other oomycetes. The genome is a very useful resource to serve as a reference for analysis of P. destructor isolates and for comparative genomic studies of the biotrophic oomycetes.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


2020 ◽  
Author(s):  
Lauren Coombe ◽  
Vladimir Nikolić ◽  
Justin Chu ◽  
Inanc Birol ◽  
René L. Warren

AbstractSummaryThe ability to generate high-quality genome sequences is cornerstone to modern biological research. Even with recent advancements in sequencing technologies, many genome assemblies are still not achieving reference-grade. Here, we introduce ntJoin, a tool that leverages structural synteny between a draft assembly and reference sequence(s) to contiguate and correct the former with respect to the latter. Instead of alignments, ntJoin uses a lightweight mapping approach based on a graph data structure generated from ordered minimizer sketches. The tool can be used in a variety of different applications, including improving a draft assembly with a reference-grade genome, a short read assembly with a draft long read assembly, and a draft assembly with an assembly from a closely-related species. When scaffolding a human short read assembly using the reference human genome or a long read assembly, ntJoin improves the NGA50 length 23- and 13-fold, respectively, in under 13 m, using less than 11 GB of RAM. Compared to existing reference-guided assemblers, ntJoin generates highly contiguous assemblies faster and using less memory.Availability and implementationntJoin is written in C++ and Python, and is freely available at https://github.com/bcgsc/[email protected]


2020 ◽  
Author(s):  
Bernard Y Kim ◽  
Jeremy Wang ◽  
Danny E. Miller ◽  
Olga Barmina ◽  
Emily K. Delaney ◽  
...  

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long read sequencing allow high quality genome assemblies for tens or even hundreds of species to be generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of high-quality assemblies for 101 lines of 95 drosophilid species encompassing 14 species groups and 35 sub-groups with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. These assemblies, along with detailed wet lab protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution within this key group.


Author(s):  
Giselle C. Martin-Hernandez ◽  
Bettina Müller ◽  
Christian Brandt ◽  
Martin Hölzer ◽  
Adrian Viehweger ◽  
...  

The genus Rhodotorula includes basidiomycetous oleaginous yeast species. R. babjevae can produce compounds of biotechnological interest such as lipids, carotenoids and biosurfactants from low value substrates such as lignocellulose hydrolysate. High-quality genome assemblies are needed to develop genetic tools and to understand fungal evolution and genetics. Here, we combined short- and long-read sequencing to resolve the genomes of two R. babjevae strains, CBS 7808 (type strain) and DBVPG 8058 at chromosomal level. Both genomes have a size of 21 Mbp and a GC content of 68.2%. Allele frequency analysis indicated tetraploidy in both strains. They harbor 21 putative chromosomes with sizes ranging from 0.4 to 2.4 Mb. In both assemblies, the mitochondrial genome was recovered in a single contig, which shared 97% pairwise identity. The pairwise identity between the majority of chromosomes ranges from 82% to 87%. We found indications for strain-specific extrachromosomal endogenous DNA. 7,591 protein-coding genes and 7,607 associated transcripts were annotated in CBS 7808 and 7,481 protein-coding genes and 7,516 associated transcripts in DBVPG 8058. CBS 7808 has accumulated a higher number of tandem duplications than DBVPG 8058. We identified large translocation events between putative chromosomes and a high genetic divergence between the two strains.


2020 ◽  
Vol 33 (8) ◽  
pp. 1025-1028
Author(s):  
Yoonyoung Lee ◽  
Kwang-Soo Cho ◽  
Jin-Hee Seo ◽  
Kee Hoon Sohn ◽  
Maxim Prokchorchik

Phytophthora infestans is a devastating pathogen causing potato late blight (Solanum tuberosum). Here we report the sequencing, assembly and genome annotation for two Phytophthora infestans isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of P. infestans genome assembly. Our resources would help researchers better understand the molecular mechanisms by which P. infestans causes late blight disease in the future.


Author(s):  
Esther Camacho ◽  
Sandra González-de la Fuente ◽  
Jose C. Solana ◽  
Alberto Rastrojo ◽  
Fernando Carrasco-Ramiro ◽  
...  

Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions have been reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation has been improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regards, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.


2020 ◽  
Author(s):  
Sachiko Isobe ◽  
Yuki Matsumoto ◽  
Claire Chung ◽  
Mika Sakamoto ◽  
Ting-Fung Chan ◽  
...  

AbstractThe domestic cat (Felis catus) is one of the most popular companion animals in the world. Comprehensive genomic resources will aid the development and application of veterinary medicine including to improve feline health, in particular, to enable precision medicine which is promising in human application. However, currently available cat genome assemblies were mostly built based on the Abyssinian cat breed which is highly inbred and has limited power in representing the vast diversity of the cat population. Moreover, the current reference assembly remains fragmented with sequences contained in thousands of scaffolds. We constructed a reference-grade chromosome-scale genome assembly of a domestic cat, Felis catus genome of American Shorthair breed, Anicom American shorthair 1.0 (AnAms1.0) with high contiguity (scaffold N50 > 120 Mb), by combining multiple advanced genomic technologies, including PacBio long-read sequencing as well as sequence scaffolding by long-range genomic information obtained from Hi-C and optical mapping data. Homology-based and ab initio gene annotation was performed with the Iso-Seq data. Analyzed data is be publicly accessible on Cats genome informatics (Cats-I, https://cat.annotation.jp/), a cat genome database established as a platform to facilitate the accumulation and sharing of genomic resources to improve veterinary care.


2019 ◽  
Author(s):  
Dengfeng Guan ◽  
Shane A. McCarthy ◽  
Jonathan Wood ◽  
Kerstin Howe ◽  
Yadong Wang ◽  
...  

AbstractMotivationRapid development in long read sequencing and scaffolding technologies is accelerating the production of reference-quality assemblies for large eukaryotic genomes. However, haplotype divergence in regions of high heterozygosity often results in assemblers creating two copies rather than one copy of a region, leading to breaks in contiguity and compromising downstream steps such as gene annotation. Several tools have been developed to resolve this problem. However, they either only focus on removing contained duplicate regions, also known as haplotigs, or fail to use all the relevant information and hence make errors.ResultsHere we present a novel tool “purge_dups” that uses sequence similarity and read depth to automatically identify and remove both haplotigs and heterozygous overlaps. In comparison with the current standard, purge_haplotigs, we demonstrate that purge_dups can reduce heterozygous duplication and increase assembly continuity while maintaining completeness of the primary assembly. Moreover, purge_dups is fully automatic and can be easy integrated into assembly pipelines.AvailabilityThe source code is written in C and is available at https://github.com/dfguan/[email protected], [email protected]


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bernard Y Kim ◽  
Jeremy Wang ◽  
Danny E Miller ◽  
Olga Barmina ◽  
Emily Kay Delaney ◽  
...  

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


Sign in / Sign up

Export Citation Format

Share Document