scholarly journals Adaptive feature detection from differential processing in parallel retinal pathways

2017 ◽  
Author(s):  
Yusuf Ozuysal ◽  
David B. Kastner ◽  
Stephen A. Baccus

To transmit information efficiently in a changing environment, the retina adapts to visual contrast by adjusting its gain, latency and mean response. Additionally, the temporal frequency selectivity, or bandwidth changes to encode the absolute intensity when the stimulus environment is noisy, and intensity differences when noise is low. We show that the On pathway of On-Off retinal amacrine and ganglion cells is required to change temporal bandwidth but not other adaptive properties. This remarkably specific adaptive mechanism arises from differential effects of contrast on the On and Off pathways. We analyzed a biophysical model fit only to a cell's membrane potential, and verified pharmacologically that it accurately revealed the two pathways. We conclude that changes in bandwidth arise mostly from differences in synaptic threshold in the two pathways, rather than differences in synaptic release dynamics. Different efficient codes are selected by different thresholds in two independently adapting neural pathways.

2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


1989 ◽  
Vol 94 (6) ◽  
pp. 987-995 ◽  
Author(s):  
J B Troy ◽  
C Enroth-Cugell

We examined the dependence of the center radius of X cells on temporal frequency and found that at temporal frequencies above 40 Hz the radius increases in a monotonic fashion, reaching a size approximately 30% larger at 70 Hz. This kind of spatial expansion has been predicted with cable models of receptive fields where inductive elements are included in modeling the neuronal membranes. Hence, the expansion of the center radius is clearly important for modeling X cell receptive fields. On the other hand, we feel that it might be of only minor functional significance, since the responsivity of X cells is attenuated at these high temporal frequencies and the signal-to-noise ratio is considerably worse than at low and midrange temporal frequencies.


2010 ◽  
Vol 28 (1) ◽  
pp. 51-60 ◽  
Author(s):  
CHRISTIAN PULLER ◽  
SILKE HAVERKAMP

AbstractColor vision in mammals is based on the expression of at least two cone opsins that are sensitive to different wavelengths of light. Furthermore, retinal pathways conveying color-opponent signals are required for color discrimination. Most of the primates are trichromats, and “color-coded channels” of their retinas are unveiled to a large extent. In contrast, knowledge of cone-selective pathways in nonprimate dichromats is only slowly emerging, although retinas of dichromats like mice or rats are extensively studied as model systems for retinal information processing. Here, we review recent progress of research on color-coded pathways in nonprimate dichromats to identify differences or similarities between di- and trichromatic mammals. In addition, we applied immunohistochemical methods and confocal microscopy to retinas of different species and present data on their neuronal properties, which are expected to contribute to color vision. Basic neuronal features such as the “blue cone bipolar cell” exist in every species investigated so far. Moreover, there is increasing evidence for chromatic OFF channels in dichromats and retinal ganglion cells that relay color-opponent signals to the brain. In conclusion, di- and trichromats share similar retinal pathways for color transmission and processing.


2012 ◽  
Vol 108 (10) ◽  
pp. 2679-2688 ◽  
Author(s):  
Zhiyin Liang ◽  
Michael A. Freed

The retina is divided into parallel and mostly independent ON and OFF pathways, but the ON pathway “cross” inhibits the OFF pathway. Cross inhibition was thought to improve signal processing by the OFF pathway, but its effect on contrast encoding had not been tested experimentally. To quantify the effect of cross inhibition on the encoding of contrast, we presented a dark flash to an in vitro preparation of the mammalian retina. We then recorded excitatory currents, inhibitory currents, membrane voltages, and spikes from OFF α-ganglion cells. The recordings were subjected to an ideal observer analysis that used Bayesian methods to determine how accurately the recordings detected the dark flash. We found that cross inhibition increases the detection accuracy of currents and membrane voltages. Yet these improvements in encoding do not fully reach the spike train, because cross inhibition also hyperpolarizes the OFF α-cell below spike threshold, preventing small signals in the membrane voltages at low contrast from reaching the spike train. The ultimate effect of cross inhibition is to increase the accuracy with which the spike train detects moderate contrast, but reduce the accuracy with which it detects low contrast. In apparent compensation for the loss of accuracy at low contrast, cross inhibition, by hyperpolarizing the OFF α-cell, reduces the number of spikes required to detect the dark flash and thereby increases encoding efficiency.


Science ◽  
1977 ◽  
Vol 198 (4323) ◽  
pp. 1267-1269 ◽  
Author(s):  
E. Famiglietti ◽  
A Kaneko ◽  
M Tachibana

2017 ◽  
Vol 41 (S1) ◽  
pp. S638-S638
Author(s):  
T. Schwitzer ◽  
R. Schwan ◽  
A. Giersch ◽  
E. Albuisson ◽  
K. Angioi-Duprez ◽  
...  

IntroductionAlthough cannabis is very widespread worldwide, its brain toxicity is poorly understood. The neuroretina is an accessible extension of the brain and could be a relevant site for investigating neurotransmission abnormalities in neuropsychiatric disorders. The retina has a functional endocannabinoid system involved in the regulation of retinal neurotransmission. In animals, the modulation of this system led to retinal dysfunctions measured with the electroretinogram (ERG).ObjectivesTo assess whether the regular cannabis use could affect the neuroretinal function.AimsAssessments of the neuroretinal function in cannabis users compared with controls.MethodsRecordings of pattern, flash and on-off ERG were performed in 55 cannabis users and 29 controls. The amplitude and implicit time of the following waves were evaluated: N95 (pattern); a – and b – (flash); a –, b- and d1 – (on-off).ResultsCannabis users showed a significant increase in implicit time of the waves N95 (P = 0.0001), a- (P = 0.029) and b – (P = 0.002) for the flash ERG and b – (P = 0.016) and d1 – (P = 0.027) for the on-off ERG, compared with controls. No significant difference was found between groups in terms of wave's amplitudes.ConclusionsThese results show a delay in the response of cones, bipolar and ganglion cells of the on and off pathways to constitute a delay of ≈ 6 ms in the transmission of information from the retina to the brain in cannabis users. Cannabis could disrupt the regulatory role of the cannabinoid system and impair retinal glutamatergic neurotransmission. The consequences on visual perception should be explored in future studies.Disclosure of interestThe authors have not supplied their declaration of competing interest.


1992 ◽  
Vol 9 (1) ◽  
pp. 39-45 ◽  
Author(s):  
R.C. Reid ◽  
J.D. Victor ◽  
R.M. Shapley

AbstractWe have studied the responses of striate cortical neurons to stimuli whose contrast is modulated in time by either a single sinusoid or by the sum of eight sinusoids. The sum-of-sinusoids stimulus resembles white noise and has been used to study the linear and nonlinear dynamics of retinal ganglion cells (Victor et al., 1977). In cortical neurons, we have found different linear and second-order responses to single-sinusoid and sum-of-sinusoids inputs. Specifically, while the responsivity near the optimal temporal frequency is lower for the sum-of-sinusoids stimulus, the responsivity at higher temporal frequencies is relatively greater. Along with this change in the response amplitudes, there is a systematic change in the time course of responses. For complex cells, the integration time, the effective delay due to a combination of actual delays and low-pass filter stages, changes from a median of 85 ms with single sinusoids to 57 ms with a sum of sinusoids. For simple cells, the integration times for single sinusoids range from 44–100 ms, but cluster tightly around 40 ms for the sum-of-sinusoids stimulus. The change in time constant would argue that the increased sensitivity to high frequencies cannot be explained by a static threshold, but must be caused by a fundamental alteration in the response dynamics. These effects are not seen in the retina (Shapley & Victor, 1981) and are most likely cortical in origin.


Author(s):  
Saad Idrees ◽  
Matthias-Philipp Baumann ◽  
Maria M. Korympidou ◽  
Timm Schubert ◽  
Alexandra Kling ◽  
...  

AbstractVisual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find a novel retinal processing motif underlying retinal saccadic suppression, “dynamic reversal suppression”, which is triggered by sequential stimuli containing contrast reversals. This motif does not involve inhibition but relies on nonlinear transformation of the inherently slow responses of cone photoreceptors by downstream retinal pathways. Two further components of suppression are present in ON ganglion cells and originate in the cells’ receptive field surround, highlighting a novel disparity between ON and OFF ganglion cells. Our results are relevant for any sequential stimulation encountered frequently in naturalistic scenarios.


2019 ◽  
Author(s):  
Larissa Höfling ◽  
Philipp Berens ◽  
Günther Zeck

ABSTRACTRetinal implants are used to replace lost photoreceptors in blind patients suffering from retinopathies such as retinitis pigmentosa. Patients wearing implants regain some rudimentary visual function. However, it is severely limited compared to normal vision because non-physiological stimulation strategies fail to selectively activate different retinal pathways at sufficient spatial and temporal resolution. The development of improved stimulation strategies is rendered difficult by the large space of potential stimuli. Here we systematically explore a subspace of potential stimuli by electrically stimulating healthy and blind mouse retina in epiretinal configuration using smooth Gaussian white noise delivered by a high-density CMOS-based microelectrode array. We identify linear filters of retinal ganglion cells (RGCs) by fitting a linear-nonlinear-Poisson (LNP) model. Our stimulus evokes fast, reliable, and spatially confined spiking responses in RGC which are accurately predicted by the LNP model. Furthermore, we find diverse shapes of linear filters in the linear stage of the model, suggesting diverse preferred electrical stimuli of RGCs. Our smooth electrical stimulus could provide a starting point of a model-guided search for improved stimuli for retinal prosthetics.


Sign in / Sign up

Export Citation Format

Share Document