scholarly journals Beyond Bilingualism: multilingual experience correlates with caudate volume

2017 ◽  
Author(s):  
Alexis Hervais-Adelman ◽  
Natalia Egorova ◽  
Narly Golestani

AbstractThe multilingual brain implements mechanisms that serve to select the appropriate language as a function of the communicative environment. Engaging these mechanisms on a regular basis appears to have consequences for brain structure and function. Studies have implicated the caudate nuclei as important nodes in polyglot language control processes, and have also shown structural differences in the caudate nuclei in bilingual compared to monolingual populations. However, the majority of published work has focused on the categorical differences between monolingual and bilingual individuals, and little is known about whether these findings extend to multilingual individuals, who have even greater language control demands. In the present paper, we present an analysis of the volume and morphology of the caudate nuclei, putamen, pallidum and thalami in 75 multilingual individuals who speak three or more languages. Volumetric analyses revealed a significant relationship between multilingual experience and right caudate volume, as well as a marginally-significant relationship with left caudate volume. Vertex-wise analyses revealed a significant enlargement of dorsal and anterior portions of the left caudate nucleus, known to have connectivity with executive brain regions, as a function of multilingual expertise. These results suggest that multilingual expertise might exercise a continuous impact on brain structure, and that as additional languages beyond a second are acquired, the additional demands for linguistic and cognitive control result in modifications to brain structures associated with language management processes.

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shijia Li ◽  
Jie Song ◽  
Pengfei Ke ◽  
Lingyin Kong ◽  
Bingye Lei ◽  
...  

AbstractThe effect of the gut microbiome on the central nervous system and its possible role in mental disorders have received increasing attention. However, knowledge about the relationship between the gut microbiome and brain structure and function is still very limited. Here, we used 16S rRNA sequencing with structural magnetic resonance imaging (sMRI) and resting-state functional (rs-fMRI) to investigate differences in fecal microbiota between 38 patients with schizophrenia (SZ) and 38 demographically matched normal controls (NCs) and explored whether such differences were associated with brain structure and function. At the genus level, we found that the relative abundance of Ruminococcus and Roseburia was significantly lower, whereas the abundance of Veillonella was significantly higher in SZ patients than in NCs. Additionally, the analysis of MRI data revealed that several brain regions showed significantly lower gray matter volume (GMV) and regional homogeneity (ReHo) but significantly higher amplitude of low-frequency fluctuation in SZ patients than in NCs. Moreover, the alpha diversity of the gut microbiota showed a strong linear relationship with the values of both GMV and ReHo. In SZ patients, the ReHo indexes in the right STC (r = − 0.35, p = 0.031, FDR corrected p = 0.039), the left cuneus (r = − 0.33, p = 0.044, FDR corrected p = 0.053) and the right MTC (r = − 0.34, p = 0.03, FDR corrected p = 0.052) were negatively correlated with the abundance of the genus Roseburia. Our results suggest that the potential role of the gut microbiome in SZ is related to alterations in brain structure and function. This study provides insights into the underlying neuropathology of SZ.


2019 ◽  
Vol 3 (4) ◽  
Author(s):  
Chelsea M. Stillman ◽  
Shannon D. Donofry ◽  
Kirk I. Erickson

Aging is associated with changes in brain structure and function with some brain regions showing more age-related deterioration than others. There is evidence that regional changes in brain structure and function may affect the functioning of other, less- age-sensitive brain regions and lead to more global changes in brain efficiency and cognitive functioning. Fortunately, emerging evidence from health neuroscience suggests that age-related brain changes and associated cognitive declines may not be inevitable. In fact, they may even be reversible. Exercise is a particularly promising health behavior known to induce changes in regional brain structure and function in older adults. However, much less is known about how exercise affects the organization of brain networks in late life. The purpose of this review is to summarize what is known to date regarding the relationships between functional connectivity, exercise, fitness, and physical activity in aging. A critical summary of this literature may reveal novel mechanisms by which physical activity influences brain health, which in turn may be leveraged to improve other aspects of functioning, including physical, cognitive, and mental health in late life.


2021 ◽  
Author(s):  
Shijia Li ◽  
Jie Song ◽  
Pengfei Ke ◽  
Lingyin Kong ◽  
Bingye Lei ◽  
...  

Abstract The effects of the gut microbiome on the central nervous system and its possible role in mental disorders have received increasing attention. However, our knowledge about the relationship between the gut microbiome and brain structure and function is still very limited. Here, we leveraged 16S rRNA sequencing with structural magnetic resonance imaging (sMRI) and resting-state functional (rs-fMRI) to investigate differences in fecal microbiota between 38 patients with schizophrenia (SZs) and 38 demographically matched normal controls (NCs) and explored whether such differences were associated with brain structure and function. At the genus level, we found that the relative abundance of Ruminococcus and Roseburia was significantly lower, whereas the abundance of Veillonella was increased in SZs compared to NCs. Additionally, the MRI results revealed that several brain regions showed lower gray matter volume (GMV) and regional homogeneity (ReHo), but increased amplitude of low-frequency fluctuation (ALFF) in SZs than in NCs. Statistical analyses were performed to explore the associations between microbial shifts and brain structure and function. Alpha diversity of gut microbiota showed a strong linear relationship with GMV and ReHo. Moreover, we found that lower ReHo indexes in the right STC (r = -0.35, p = 0.031, FDR corrected p = 0.039), the left cuneus (r = -0.33, p = 0.044, FDR corrected p = 0.053) and the right MTC (r = -0.34, p = 0.03, FDR corrected p = 0.052) were negatively correlated with a lower abundance of the genus Roseburia. This study suggests that the potential role of the gut microbiome in schizophrenia (SZ) is related to the alteration of brain structure and function, suggesting a new direction for studying the pathology of SZ.


Author(s):  
Jimin Lew ◽  
Sherri Lee Jones ◽  
Christina Caccese ◽  
Isobel Orfi ◽  
Charlotte Little ◽  
...  

Abstract Testosterone (T) and cortisol (C) are the end products of neuroendocrine axes that interact with the process of shaping brain structure and function. Relative levels of T:C (TC ratio) may alter prefrontal–amygdala functional connectivity in adulthood. What remains unclear is whether TC-related effects are rooted to childhood and adolescence. We used a healthy cohort of 4–22-year-olds to test for associations between TC ratios, brain structure (amygdala volume, cortical thickness (CTh), and their coordinated growth), as well as cognitive and behavioral development. We found greater TC ratios to be associated with the growth of specific brain structures: 1) parietal CTh; 2) covariance of the amygdala with CTh in visual and somatosensory areas. These brain parameters were in turn associated with lower verbal/executive function and higher spatial working memory. In sum, individual TC profiles may confer a particular brain phenotype and set of cognitive strengths and vulnerabilities, prior to adulthood.


2017 ◽  
Vol 49 (5S) ◽  
pp. 824 ◽  
Author(s):  
X. r. Tan ◽  
Ivan C. C. Low ◽  
Mary C. Stephenson ◽  
T. Kok ◽  
Heinrich W. Nolte ◽  
...  

2011 ◽  
Vol 32 (6) ◽  
pp. 814-822 ◽  
Author(s):  
Linda L. Chao ◽  
Linda Abadjian ◽  
Jennifer Hlavin ◽  
Deiter J. Meyerhoff ◽  
Michael W. Weiner

Sign in / Sign up

Export Citation Format

Share Document