scholarly journals Functional Connectomics from Data: Probabilistic Graphical Models for Neuronal Network of C. elegans

2017 ◽  
Author(s):  
Hexuan Liu ◽  
Jimin Kim ◽  
Eli Shlizerman

AbstractWe propose a data-driven approach to represent neuronal network dynamics as a Probabilistic Graphical Model (PGM). Our approach learns the PGM structure by employing dimension reduction to network response dynamics evoked by stimuli applied to each neuron separately. The outcome model captures how stimuli propagate through the network and thus represents functional dependencies between neurons, i.e., functional connectome. The benefit of using a PGM as the functional connectome is that posterior inference can be done efficiently and circumvent the complexities in direct inference of response pathways in dynamic neuronal networks. In particular, posterior inference reveals the relations between known stimuli and downstream neurons or allows to query which stimuli are associated with downstream neurons. For validation and as an example for our approach we apply our methodology to a model of Caenorhabiditis elegans nervous system which structure and dynamics are well-studied. From its dynamical model we collect time series of the network response and use singular value decomposition to obtain a low-dimensional projection of the time series data. We then extract dominant patterns in each data matrix to get pairwise dependency information and create a graphical model for the full somatic nervous system. The PGM enables us to obtain and verify underlying neuronal pathways dominant for known behavioral scenarios and to detect possible pathways for novel scenarios.

2018 ◽  
Vol 373 (1758) ◽  
pp. 20170377 ◽  
Author(s):  
Hexuan Liu ◽  
Jimin Kim ◽  
Eli Shlizerman

We propose an approach to represent neuronal network dynamics as a probabilistic graphical model (PGM). To construct the PGM, we collect time series of neuronal responses produced by the neuronal network and use singular value decomposition to obtain a low-dimensional projection of the time-series data. We then extract dominant patterns from the projections to get pairwise dependency information and create a graphical model for the full network. The outcome model is a functional connectome that captures how stimuli propagate through the network and thus represents causal dependencies between neurons and stimuli. We apply our methodology to a model of the Caenorhabditis elegans somatic nervous system to validate and show an example of our approach. The structure and dynamics of the C. elegans nervous system are well studied and a model that generates neuronal responses is available. The resulting PGM enables us to obtain and verify underlying neuronal pathways for known behavioural scenarios and detect possible pathways for novel scenarios. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


2021 ◽  
Author(s):  
Lorenzo Pasquini ◽  
Fatemeh Noohi ◽  
Christina R. Veziris ◽  
Eena L. Kosik ◽  
Sarah R. Holley ◽  
...  

Whether activity in the autonomic nervous system differs during distinct emotions remains controversial. We obtained continuous multichannel recordings of autonomic nervous system activity in healthy adults during a video-based emotional reactivity task. Dimensionality reduction revealed five principal components in the autonomic time series data, and these modes of covariation differentiated periods of baseline from those of video-viewing. Unsupervised clustering of the principal component time series data uncovered separable autonomic states that distinguished among the five emotion-inducing trials. These autonomic states were also detected in baseline physiology but were intermittent and of smaller magnitude. Our results suggest the autonomic nervous system assembles dynamic activity patterns during emotions that are similar across people and are present even during undirected moments of rest.


2018 ◽  
Vol 53 (4) ◽  
pp. 453-480 ◽  
Author(s):  
Sacha Epskamp ◽  
Lourens J. Waldorp ◽  
René Mõttus ◽  
Denny Borsboom

2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


1968 ◽  
Vol 8 (2) ◽  
pp. 308-309
Author(s):  
Mohammad Irshad Khan

It is alleged that the agricultural output in poor countries responds very little to movements in prices and costs because of subsistence-oriented produc¬tion and self-produced inputs. The work of Gupta and Majid is concerned with the empirical verification of the responsiveness of farmers to prices and marketing policies in a backward region. The authors' analysis of the respon¬siveness of farmers to economic incentives is based on two sets of data (concern¬ing sugarcane, cash crop, and paddy, subsistence crop) collected from the district of Deoria in Eastern U.P. (Utter Pradesh) a chronically foodgrain deficit region in northern India. In one set, they have aggregate time-series data at district level and, in the other, they have obtained data from a survey of five villages selected from 170 villages around Padrauna town in Deoria.


Sign in / Sign up

Export Citation Format

Share Document