scholarly journals An eutherian intronic sequence gave rise to a major satellite DNA in Platyrrhini

2017 ◽  
Author(s):  
Mirela Pelizaro Valeri ◽  
Guilherme Borges Dias ◽  
Valéria do Socorro Pereira ◽  
Gustavo Campos Silva Kuhn ◽  
Marta Svartman

AbstractSatellite DNAs (satDNAs) are major components of eukaryote genomes. However, because of their quick divergence, the evolutionary origin of a given satDNA family can rarely be determined. Herein we took advantage of available primate sequenced genomes to determine the origin of the CapA satDNA (~1,500 bp long monomers), first described in Sapajus apella. We show that CapA is an abundant satDNA in Platyrrhini, whereas in the genomes of most eutherian mammals, including humans, this sequence is present only as a single copy located within a large intron of the NOS1AP (nitric oxid synthase 1 adaptor protein) Gene. Our data suggest that this intronic CapA-like sequence gave rise to the CapA satDNA and we discuss possible mechanisms implicated in this event. This is the first report of a single copy intronic sequence giving origin to a satDNA that reaches up to 100,000 copies in some genomes.

2018 ◽  
Vol 14 (1) ◽  
pp. 20170686 ◽  
Author(s):  
Mirela Pelizaro Valeri ◽  
Guilherme Borges Dias ◽  
Valéria do Socorro Pereira ◽  
Gustavo Campos Silva Kuhn ◽  
Marta Svartman

Satellite DNAs (satDNAs) are major components of eukaryote genomes. However, because of their quick divergence, the evolutionary origin of a given satDNA family can rarely be determined. Herein we took advantage of available primate sequenced genomes to determine the origin of the CapA satDNA (approx. 1500 bp long monomers), first described in the tufted capuchin monkey Sapajus apella . We show that CapA is an abundant satDNA in Platyrrhini, whereas in the genomes of most eutherian mammals, including humans, this sequence is present only as a single copy located within a large intron of the NOS1AP ( nitric oxide synthase 1 adaptor protein ) gene. Our data suggest that this intronic CapA-like sequence gave rise to the CapA satDNA and we discuss possible mechanisms implicated in this event. This is the first report to our knowledge of a single copy intronic sequence giving origin to a satDNA that reaches up to 100 000 copies in some genomes.


2020 ◽  
Vol 22 (1) ◽  
pp. 296
Author(s):  
Antonio Sermek ◽  
Isidoro Feliciello ◽  
Đurđica Ugarković

In the flour beetle, Tribolium castaneum (peri)centromeric heterochromatin is mainly composed of a major satellite DNA TCAST1 interspersed with minor satellites. With the exception of heterochromatin, clustered satellite repeats are found dispersed within euchromatin. In order to uncover a possible satellite DNA function within the beetle genome, we analysed the expression of the major TCAST1 and a minor TCAST2 satellite during the development and upon heat stress. The results reveal that TCAST1 transcription was strongly induced at specific embryonic stages and upon heat stress, while TCAST2 transcription is stable during both processes. TCAST1 transcripts are processed preferentially into piRNAs during embryogenesis and into siRNAs during later development, contrary to TCAST2 transcripts, which are processed exclusively into piRNAs. In addition, increased TCAST1 expression upon heat stress is accompanied by the enrichment of the silent histone mark H3K9me3 on the major satellite, while the H3K9me3 level at TCAST2 remains unchanged. The transcription of the two satellites is proposed to be affected by the chromatin state: heterochromatin and euchromatin, which are assumed to be the prevalent sources of TCAST1 and TCAST2 transcripts, respectively. In addition, distinct regulation of the expression might be related to diverse roles that major and minor satellite RNAs play during the development and stress response.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 333-341
Author(s):  
W Stephan ◽  
S Cho

Abstract A simulation model of sequence-dependent amplification, unequal crossing over and mutation is analyzed. This model predicts the spontaneous formation of tandem-repetitive patterns of noncoding DNA from arbitrary sequences for a wide range of parameter values. Natural selection is found to play an essential role in this self-organizing process. Natural selection which is modeled as a mechanism for controlling the length of a nucleotide string but not the sequence itself favors the formation of tandem-repetitive structures. Two measures of sequence heterogeneity, inter-repeat variability and repeat length, are analyzed in detail. For fixed mutation rate, both inter-repeat variability and repeat length are found to increase with decreasing rates of (unequal) crossing over. The results are compared with data on micro-, mini- and satellite DNAs. The properties of minisatellites and satellite DNAs resemble the simulated structures very closely. This suggests that unequal crossing over is a dominant long-range ordering force which keeps these arrays homogeneous even in regions of very low recombination rates, such as at satellite DNA loci. Our analysis also indicates that in regions of low rates of (unequal) crossing over, inter-repeat variability is maintained at a low level at the expense of much larger repeat units (multimeric repeats), which are characteristic of satellite DNA. In contrast, the microsatellite data do not fit the proposed model well, suggesting that unequal crossing over does not act on these very short tandem arrays.


1994 ◽  
Vol 107 (11) ◽  
pp. 3091-3095
Author(s):  
B.K. Vig ◽  
D. Latour ◽  
J. Frankovich

The minor satellite DNA of mouse is believed to constitute the centromere. We report that centromeres of some chromosomes in the Cl1D cells of mouse are not associated with this DNA even though the latter is present on these chromosomes. The satellite DNA was detected distally from the centromere and could not be mistaken as a component of the centromere. We also report that the site of the primary constriction may not always coincide with the site of the anti-kinetochore antibody reaction. Whereas the regions containing the major satellite decondense upon treatment with bisbenzimidazole (Hoechst 33258), the sites carrying minor satellite resist decondensing.


1996 ◽  
Vol 109 (9) ◽  
pp. 2221-2228 ◽  
Author(s):  
L. Nicol ◽  
P. Jeppesen

We have analyzed the organization of the homogeneously staining regions (HSRs) in chromosomes from a methotrexate-resistant mouse melanoma cell line. Fluorescence in situ hybridization techniques were used to localize satellite DNA sequences and the amplified copies of the dihydrofolate reductase (DHFR) gene that confer drug-resistance, in combination with immunofluorescence using antibody probes to differentiate chromatin structure. We show that the major DNA species contained in the HSRs is mouse major satellite, confirming previous reports, and that this is interspersed with DHFR DNA in an alternating tandem array that can be resolved at the cytological level. Mouse minor satellite DNA, which is normally located at centromeres, is also distributed along the HSRs, but does not appear to interfere with centromere function. The blocks of major satellite DNA are coincident with chromatin domains that are labelled by an autoantibody that recognizes a mammalian homologue of Drosophila heterochromatin-associated protein 1, shown previously to be confined to centric heterochromatin in mouse. An antiserum that specifically recognizes acetylated histone H4, a marker for active chromatin, fails to bind to the satellite DNA domains, but labels the intervening segments containing DHFR DNA. We can find no evidence for the spreading of the inactive chromatin domains into adjacent active chromatin, even after extended passaging of cells in the absence of methotrexate selection.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 352 ◽  
Author(s):  
Karen H. Miga

The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability, contemporary high-resolution disease association studies are unable to detect causal variants in these regions. Nevertheless, recently uncovered associations between satellite DNA variation and human disease support that these regions present a substantial and biologically important fraction of human sequence variation. Therefore, there is a pressing and unmet need to detect and incorporate this uncharacterized sequence variation into broad studies of human evolution and medical genomics. Here I discuss the current knowledge of satellite DNA variation in the human genome, focusing on centromeric satellites and their potential implications for disease.


Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 881-886 ◽  
Author(s):  
P Lorite ◽  
MF García ◽  
T Palomeque

This paper is the first record of the satellite DNA of Formicidae. The satellite DNA of the ant Messor structor is organized in a tandem repeat of monomers of 79 bp. Like satellite DNAs of other insects, it is AT rich and presents direct and inverted internal repeats. Restriction analysis of the total DNA with methylation-sensitive enzymes strongly suggests that this DNA is undermethylated. The presence of this repetitive DNA in other species of the genus Messor is also tested. Key words: Formicidae, methylation, nucleotide DNA composition, satellite DNA.


1995 ◽  
Vol 69 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
M.S. Rossi ◽  
C.A. Redi ◽  
G. Viale ◽  
A.I. Massarini ◽  
E. Capanna

Genome ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 247-256 ◽  
Author(s):  
A Martínez-Lage ◽  
F Rodríguez-Fariña ◽  
A González-Tizón ◽  
J Méndez

A phylogenetic reconstruction based on the amplification of 3 satellite DNAs (stDNAs) was carried out in 1 crustacean species and 15 bivalve species of the subclass Pteriomorphia (10, subfamily Mytilinae; 1, subfamily Litophaginae; 1, subfamily Modiolinae, all belonging to family Mytilidae; 1, family Arcidae; and 2, family Pectinidae). The sequences obtained showed motifs with high similarity to those of A and B boxes of tRNA promoter regions. Dot-blot hybridizations revealed that the 3 stDNAs are present mainly in high copy numbers for each species of the genus Mytilus, whereas for the other species they appear in low copy numbers. Maximum-parsimony trees evidenced a tendency to group Mytilus clones together, and species containing these sequences as a single copy were distributed among the different mytilids. Finally, the possible origin and evolution of these stDNAs is discussed.Key words: bivalves, Pteriomorphia, satellite DNA, phylogeny, dot-blot.


Sign in / Sign up

Export Citation Format

Share Document