scholarly journals Generative adversarial networks for reconstructing natural images from brain activity

2017 ◽  
Author(s):  
K. Seeliger ◽  
U. Güçlü ◽  
L. Ambrogioni ◽  
Y. Güçlütürk ◽  
M. A. J. van Gerven

AbstractWe explore a method for reconstructing visual stimuli from brain activity. Using large databases of natural images we trained a deep convolutional generative adversarial network capable of generating gray scale photos, similar to stimUli presented during two functional magnetic resonance imaging experiments. Using a linear model we learned to predict the generative model’s latent space from measured brain activity. The objective was to create an image similar to the presented stimulus image through the previously trained generator. Using this approach we were able to reconstruct structural and some semantic features of a proportion of the natural images sets. A behavioral test showed that subjects were capable of identifying a reconstruction of the original stimuhis in 67.2% and 66.4% of the cases in a pairwise comparison for the two natural image datasets respectively. our approach does not require end-to-end training of a large generative model on limited neuroimaging data. Rapid advances in generative modeling promise further improvements in reconstruction performance.

2020 ◽  
Author(s):  
Thirza Dado ◽  
Yağmur Güçlütürk ◽  
Luca Ambrogioni ◽  
Gabriëlle Ras ◽  
Sander E. Bosch ◽  
...  

AbstractWe introduce a new framework for hyperrealistic reconstruction of perceived naturalistic stimuli from brain recordings. To this end, we embrace the use of generative adversarial networks (GANs) at the earliest step of our neural decoding pipeline by acquiring functional magnetic resonance imaging data as subjects perceived face images created by the generator network of a GAN. Subsequently, we used a decoding approach to predict the latent state of the GAN from brain data. Hence, latent representations for stimulus (re-)generation are obtained, leading to state-of-the-art image reconstructions. Altogether, we have developed a highly promising approach for decoding sensory perception from brain activity and systematically analyzing neural information processing in the human brain.DisclaimerThis manuscript contains no real face images; all faces are artificially generated by a generative adversarial network.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 734 ◽  
Author(s):  
Yan Ma ◽  
Kang Liu ◽  
Zhibin Guan ◽  
Xinkai Xu ◽  
Xu Qian ◽  
...  

Augmented Reality (AR) is crucial for immersive Human–Computer Interaction (HCI) and the vision of Artificial Intelligence (AI). Labeled data drives object recognition in AR. However, manually annotating data is expensive, labor-intensive, and data distribution asymmetry . Scantily labeled data limits the application of AR. Aiming at solving the problem of insufficient and asymmetry training data in AR object recognition, an automated vision data synthesis method, i.e., background augmentation generative adversarial networks (BAGANs), is proposed in this paper based on 3D modeling and the Generative Adversarial Network (GAN) algorithm. Our approach has been validated to have better performance than other methods through image recognition tasks with respect to the natural image database ObjectNet3D. This study can shorten the algorithm development time of AR and expand its application scope, which is of great significance for immersive interactive systems.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 220
Author(s):  
Chunxue Wu ◽  
Haiyan Du ◽  
Qunhui Wu ◽  
Sheng Zhang

In the automatic sorting process of express delivery, a three-segment code is used to represent a specific area assigned by a specific delivery person. In the process of obtaining the courier order information, the camera is affected by factors such as light, noise, and subject shake, which will cause the information on the courier order to be blurred, and some information will be lost. Therefore, this paper proposes an image text deblurring method based on a generative adversarial network. The model of the algorithm consists of two generative adversarial networks, combined with Wasserstein distance, using a combination of adversarial loss and perceptual loss on unpaired datasets to train the network model to restore the captured blurred images into clear and natural image. Compared with the traditional method, the advantage of this method is that the loss function between the input and output images can be calculated indirectly through the positive and negative generative adversarial networks. The Wasserstein distance can achieve a more stable training process and a more realistic generation effect. The constraints of adversarial loss and perceptual loss make the model capable of training on unpaired datasets. The experimental results on the GOPRO test dataset and the self-built unpaired dataset showed that the two indicators, peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), increased by 13.3% and 3%, respectively. The human perception test results demonstrated that the algorithm proposed in this paper was better than the traditional blur algorithm as the deblurring effect was better.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingxi Yang ◽  
Hui Wang ◽  
Wen Li ◽  
Xiaobo Wang ◽  
Shizhao Wei ◽  
...  

Abstract Background Protein post-translational modification (PTM) is a key issue to investigate the mechanism of protein’s function. With the rapid development of proteomics technology, a large amount of protein sequence data has been generated, which highlights the importance of the in-depth study and analysis of PTMs in proteins. Method We proposed a new multi-classification machine learning pipeline MultiLyGAN to identity seven types of lysine modified sites. Using eight different sequential and five structural construction methods, 1497 valid features were remained after the filtering by Pearson correlation coefficient. To solve the data imbalance problem, Conditional Generative Adversarial Network (CGAN) and Conditional Wasserstein Generative Adversarial Network (CWGAN), two influential deep generative methods were leveraged and compared to generate new samples for the types with fewer samples. Finally, random forest algorithm was utilized to predict seven categories. Results In the tenfold cross-validation, accuracy (Acc) and Matthews correlation coefficient (MCC) were 0.8589 and 0.8376, respectively. In the independent test, Acc and MCC were 0.8549 and 0.8330, respectively. The results indicated that CWGAN better solved the existing data imbalance and stabilized the training error. Alternatively, an accumulated feature importance analysis reported that CKSAAP, PWM and structural features were the three most important feature-encoding schemes. MultiLyGAN can be found at https://github.com/Lab-Xu/MultiLyGAN. Conclusions The CWGAN greatly improved the predictive performance in all experiments. Features derived from CKSAAP, PWM and structure schemes are the most informative and had the greatest contribution to the prediction of PTM.


2021 ◽  
Vol 9 (7) ◽  
pp. 691
Author(s):  
Kai Hu ◽  
Yanwen Zhang ◽  
Chenghang Weng ◽  
Pengsheng Wang ◽  
Zhiliang Deng ◽  
...  

When underwater vehicles work, underwater images are often absorbed by light and scattered and diffused by floating objects, which leads to the degradation of underwater images. The generative adversarial network (GAN) is widely used in underwater image enhancement tasks because it can complete image-style conversions with high efficiency and high quality. Although the GAN converts low-quality underwater images into high-quality underwater images (truth images), the dataset of truth images also affects high-quality underwater images. However, an underwater truth image lacks underwater image enhancement, which leads to a poor effect of the generated image. Thus, this paper proposes to add the natural image quality evaluation (NIQE) index to the GAN to provide generated images with higher contrast and make them more in line with the perception of the human eye, and at the same time, grant generated images a better effect than the truth images set by the existing dataset. In this paper, several groups of experiments are compared, and through the subjective evaluation and objective evaluation indicators, it is verified that the enhanced image of this algorithm is better than the truth image set by the existing dataset.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1349
Author(s):  
Stefan Lattner ◽  
Javier Nistal

Lossy audio codecs compress (and decompress) digital audio streams by removing information that tends to be inaudible in human perception. Under high compression rates, such codecs may introduce a variety of impairments in the audio signal. Many works have tackled the problem of audio enhancement and compression artifact removal using deep-learning techniques. However, only a few works tackle the restoration of heavily compressed audio signals in the musical domain. In such a scenario, there is no unique solution for the restoration of the original signal. Therefore, in this study, we test a stochastic generator of a Generative Adversarial Network (GAN) architecture for this task. Such a stochastic generator, conditioned on highly compressed musical audio signals, could one day generate outputs indistinguishable from high-quality releases. Therefore, the present study may yield insights into more efficient musical data storage and transmission. We train stochastic and deterministic generators on MP3-compressed audio signals with 16, 32, and 64 kbit/s. We perform an extensive evaluation of the different experiments utilizing objective metrics and listening tests. We find that the models can improve the quality of the audio signals over the MP3 versions for 16 and 32 kbit/s and that the stochastic generators are capable of generating outputs that are closer to the original signals than those of the deterministic generators.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4867
Author(s):  
Lu Chen ◽  
Hongjun Wang ◽  
Xianghao Meng

With the development of science and technology, neural networks, as an effective tool in image processing, play an important role in gradual remote-sensing image-processing. However, the training of neural networks requires a large sample database. Therefore, expanding datasets with limited samples has gradually become a research hotspot. The emergence of the generative adversarial network (GAN) provides new ideas for data expansion. Traditional GANs either require a large number of input data, or lack detail in the pictures generated. In this paper, we modify a shuffle attention network and introduce it into GAN to generate higher quality pictures with limited inputs. In addition, we improved the existing resize method and proposed an equal stretch resize method to solve the problem of image distortion caused by different input sizes. In the experiment, we also embed the newly proposed coordinate attention (CA) module into the backbone network as a control test. Qualitative indexes and six quantitative evaluation indexes were used to evaluate the experimental results, which show that, compared with other GANs used for picture generation, the modified Shuffle Attention GAN proposed in this paper can generate more refined and high-quality diversified aircraft pictures with more detailed features of the object under limited datasets.


Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


Sign in / Sign up

Export Citation Format

Share Document