scholarly journals Insights into circovirus host range from the genomic fossil record

2018 ◽  
Author(s):  
Tristan P.W. Dennis ◽  
Peter J. Flynn ◽  
William Marciel de Souza ◽  
Joshua B. Singer ◽  
Corrie S. Moreau ◽  
...  

AbstractA diverse range of DNA sequences derived from circoviruses (family Circoviridae) have been identified in samples obtained from humans and domestic animals, often in association with pathological conditions. In the majority of cases, however, little is known about the natural biology of the viruses from which these sequences are derived. Endogenous circoviral elements (CVe) are DNA sequences derived from circoviruses that occur in animal genomes and provide a useful source of information about circovirus-host relationships. In this study we screened genome assemblies of 675 animal species and identified numerous circovirus-related sequences, including the first examples of CVe derived from cycloviruses. We confirmed the presence of these CVe in the germline of the elongate twig ant (Pseudomyrmex gracilis), thereby establishing that cycloviruses infect insects. We examined the evolutionary relationships between CVe and contemporary circoviruses, showing that CVe from ants and mites group relatively closely with cycloviruses in phylogenies. Furthermore, the relatively random interspersal of CVe from insect genomes with cyclovirus sequences recovered from vertebrate samples, suggested that contamination might be an important consideration in studies reporting these viruses. Our study demonstrates how endogenous viral sequences can inform metagenomics-based virus discovery. In addition, it raises doubts about the role of cycloviruses as pathogens of humans and other vertebrates.

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Tristan P. W. Dennis ◽  
Peter J. Flynn ◽  
William Marciel de Souza ◽  
Joshua B. Singer ◽  
Corrie S. Moreau ◽  
...  

ABSTRACT A diverse range of DNA sequences derived from circoviruses (family Circoviridae) has been identified in samples obtained from humans and domestic animals, often in association with pathological conditions. In the majority of cases, however, little is known about the natural biology of the viruses from which these sequences are derived. Endogenous circoviral elements (CVe) are DNA sequences derived from circoviruses that occur in animal genomes and provide a useful source of information about circovirus-host relationships. In this study, we screened genome assemblies of 675 animal species and identified numerous circovirus-related sequences, including the first examples of CVe derived from cycloviruses. We confirmed the presence of these CVe in the germ line of the elongate twig ant (Pseudomyrmex gracilis), thereby establishing that cycloviruses infect insects. We examined the evolutionary relationships between CVe and contemporary circoviruses, showing that CVe from ants and mites group relatively closely with cycloviruses in phylogenies. Furthermore, the relatively random interspersion of CVe from insect genomes with cyclovirus sequences recovered from vertebrate samples suggested that contamination might be an important consideration in studies reporting these viruses. Our study demonstrates how endogenous viral sequences can inform metagenomics-based virus discovery. In addition, it raises doubts about the role of cycloviruses as pathogens of humans and other vertebrates. IMPORTANCE Advances in DNA sequencing have dramatically increased the rate at which new viruses are being identified. However, the host species associations of most virus sequences identified in metagenomic samples are difficult to determine. Our analysis indicates that viruses proposed to infect vertebrates (in some cases being linked to human disease) may in fact be restricted to arthropod hosts. The detection of these sequences in vertebrate samples may reflect their widespread presence in the environment as viruses of parasitic arthropods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
George Vaos ◽  
Ioannis D. Kostakis ◽  
Nick Zavras ◽  
Athanasios Chatzemichael

Calprotectin (CP) is a calcium- and zinc-binding protein of the S100 family expressed mainly by neutrophils with important extracellular activity. The aim of the current review is to summarize the latest findings concerning the role of CP in a diverse range of inflammatory and noninflammatory conditions among children. Increasing evidence suggests the implication of CP in the diagnosis, followup, assessment of relapses, and response to treatment in pediatric pathological conditions, such as inflammatory bowel disease, necrotizing enterocolitis, celiac disease, intestinal cystic fibrosis, acute appendicitis, juvenile idiopathic arthritis, Kawasaki disease, polymyositis-dermatomyositis, glomerulonephritis, IgA nephropathy, malaria, HIV infection, hyperzincemia and hypercalprotectinemia, and cancer. Further studies are required to provide insights into the actual role of CP in these pathological processes in pediatrics.


2018 ◽  
Author(s):  
Tristan P.W Dennis ◽  
William Marciel de Souza ◽  
Soledad Marsile-Medun ◽  
Joshua B. Singer ◽  
Sam J. Wilson ◽  
...  

AbstractCircoviruses (family Circoviridae) are small, non-enveloped viruses that have short, single-stranded DNA genomes. Circovirus sequences are frequently recovered in metagenomic investigations, indicating that these viruses are widespread, yet they remain relatively poorly understood. Endogenous circoviral elements (CVe) are DNA sequences derived from circoviruses that occur in vertebrate genomes. CVe can provide unique, retrospective information about the biology and evolution of circoviruses. In this study, we screened 362 vertebrate genome assemblies in silico to generate a catalog of CVe loci. We identified a total of 179 CVe sequences, most of which have not been reported previously. We show that these CVe loci reflect at least 19 distinct germline integration events. We determine the structure of CVe loci, identifying some that show evidence of potential functionalization. We also identify orthologous copies of CVe in snakes, fish, birds, and mammals, allowing us to add new calibrations to the timeline of circovirus evolution. Finally, we observed that some ancient CVe group robustly with contemporary circoviruses in phylogenies, with all sequences within these groups being derived from the same host class or order, implying a hitherto underappreciated stability in circovirus-host relationships. The openly available dataset constructed in this investigation provides new insights into circovirus evolution, and can be used to facilitate further studies of circoviruses and CVe.AbbreviationsCVeendogenous circoviral elementORFopen reading frameCapCapsidRepReplicasessDNAsingle-stranded DNA


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrzej Zielezinski ◽  
Jakub Barylski ◽  
Wojciech M. Karlowski

Abstract Background Characterizing phage–host interactions is critical to understanding the ecological role of both partners and effective isolation of phage therapeuticals. Unfortunately, experimental methods for studying these interactions are markedly slow, low-throughput, and unsuitable for phages or hosts difficult to maintain in laboratory conditions. Therefore, a number of in silico methods emerged to predict prokaryotic hosts based on viral sequences. One of the leading approaches is the application of the BLAST tool that searches for local similarities between viral and microbial genomes. However, this prediction method has three major limitations: (i) top-scoring sequences do not always point to the actual host; (ii) mosaic virus genomes may match to many, typically related, bacteria; and (iii) viral and host sequences may diverge beyond the point where their relationship can be detected by a BLAST alignment. Results We created an extension to BLAST, named Phirbo, that improves host prediction quality beyond what is obtainable from standard BLAST searches. The tool harnesses information concerning sequence similarity and bacteria relatedness to predict phage–host interactions. Phirbo was evaluated on three benchmark sets of known virus–host pairs, and it improved precision and recall by 11–40 percentage points over currently available, state-of-the-art, alignment-based, alignment-free, and machine-learning host prediction tools. Moreover, the discriminatory power of Phirbo for the recognition of virus–host relationships surpassed the results of other tools by at least 10 percentage points (area under the curve = 0.95), yielding a mean host prediction accuracy of 57% and 68% at the genus and family levels, respectively, and drops by 12 percentage points when using only a fraction of viral genome sequences (3 kb). Finally, we provide insights into a repertoire of protein and ncRNA genes that are shared between phages and hosts and may be prone to horizontal transfer during infection. Conclusions Our results suggest that Phirbo is a simple and effective tool for predicting phage–host relationships.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


2019 ◽  
Author(s):  
Christopher Michael Kavanagh ◽  
Susilo Wibisono ◽  
Rohan Kapitány ◽  
Whinda Yustisia ◽  
Idhamsyah Eka Putra ◽  
...  

Indonesia is the most populous Islamic country and as such is host to a diverse range of Islamic beliefs and practices. Here we examine how the diversity of beliefs and practices among Indonesian Muslims relates to group bonding and parochialism. In particular, we examine the predictive power of two distinct types of group alignment, group identification and identity fusion, among individuals from three Sunni politico-religious groups - a fundamentalist group (PKS), a moderate group (NU), and a control sample of politically unaffiliated citizens. Fundamentalists were more fused to targets than moderates or citizens, but contrary to fusion theory, we found across all groups, that group identification (not fusion) better predicted parochialism, including willingness to carry out extreme pro-group actions. We discuss how religious beliefs and practice impact parochial attitudes, as well as the implications for theoretical models linking fusion to extreme behaviour.


2020 ◽  
Vol 16 (6) ◽  
pp. 846-853
Author(s):  
Raghunandan Purohith ◽  
Nagendra P.M. Nagalingaswamy ◽  
Nanjunda S. Shivananju

Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a major predisposing factor in the development of metabolic syndrome, and dietary intervention is necessary for both prevention and management. The bioactive constituents of food play a key role in this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have beneficial effects in preventing and managing metabolic syndrome. There exists a well-established relationship between oxidative stress and major pathological conditions such as inflammation, metabolic syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of these complications. The mechanism of action and targets of dietary antioxidants as well as their effects on related pathways are being extensively studied and elucidated in recent times. This review attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith an emphasis on molecular mechanism-in the light of recent advances.


2019 ◽  
Vol 14 (7) ◽  
pp. 598-606
Author(s):  
Sarah Albogami

Background:: Regeneration is the process by which body parts lost as a result of injury are replaced, as observed in certain animal species. The root of regenerative differences between organisms is still not very well understood; if regeneration merely recycles developmental pathways in the adult form, why can some animals regrow organs whereas others cannot? In the regulation of the regeneration process as well as other biological phenomena, epigenetics plays an essential role. Objective:: This review aims to demonstrate the role of epigenetic regulators in determining regenerative capacity. Results:: In this review, we discuss the basis of regenerative differences between organisms. In addition, we present the current knowledge on the role of epigenetic regulation in regeneration, including DNA methylation, histone modification, lysine methylation, lysine methyltransferases, and the SET1 family. Conclusion:: An improved understanding of the regeneration process and the epigenetic regulation thereof through the study of regeneration in highly regenerative species will help in the field of regenerative medicine in future.


Sign in / Sign up

Export Citation Format

Share Document