scholarly journals KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition

2018 ◽  
Author(s):  
Vincent Magloire ◽  
Jonathan Cornford ◽  
Andreas Lieb ◽  
Dimitri M. Kullmann ◽  
Ivan Pavlov

AbstractAlthough cortical interneurons are apparently well-placed to suppress seizures, several recent reports have highlighted a paradoxical role of parvalbumin-positive perisomatic-targeting (PV+) interneurons in ictogenesis. Here, we use an acute in vivo model of focal cortical seizures in awake behaving mice, together with closed-loop optogenetic manipulation of PV+ interneurons, to investigate their function during seizures. We show that photo-depolarization of PV+ interneurons rapidly switches from an anti-ictal to a pro-ictal effect within a few seconds of seizure initiation. The pro-ictal effect of delayed photostimulation of PV+ interneurons was not shared with dendrite-targeting somatostatin-positive (SOM+) interneurons. We also show that this switch can be prevented by overexpression of the neuronal potassium-chloride co-transporter KCC2 in principal cortical neurons. These results suggest that strategies aimed at improving the ability of principal neurons to maintain intracellular chloride levels in the face of excessive network activity can prevent interneurons from contributing to seizure perpetuation.

2017 ◽  
Author(s):  
Chadd M. Funk ◽  
Kayla Peelman ◽  
Michele Bellesi ◽  
William Marshall ◽  
Chiara Cirelli ◽  
...  

SUMMARYCortical slow waves – the hallmark of NREM sleep - reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer 1 and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation triggers neuronal OFF periods during sleep. Next, we show that chemogenetic activation of SOM+ cells increases slow wave activity (SWA), the slope of individual slow waves, and the duration of NREM sleep; whereas their chemogenetic inhibition decreases SWA and slow wave incidence without changing time spent asleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing. These results indicate that SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated.


2004 ◽  
Vol 16 (7) ◽  
pp. 1385-1412 ◽  
Author(s):  
Peter E. Latham ◽  
Sheila Nirenberg

Cortical neurons are predominantly excitatory and highly interconnected. In spite of this, the cortex is remarkably stable: normal brains do not exhibit the kind of runaway excitation one might expect of such a system. How does the cortex maintain stability in the face of this massive excitatory feedback? More importantly, how does it do so during computations, which necessarily involve elevated firing rates? Here we address these questions in the context of attractor networks—networks that exhibit multiple stable states, or memories. We find that such networks can be stabilized at the relatively low firing rates observed in vivo if two conditions are met: (1) the background state, where all neurons are firing at low rates, is inhibition dominated, and (2) the fraction of neurons involved in a memory is above some threshold, so that there is sufficient coupling between the memory neurons and the background. This allows “dynamical stabilization” of the attractors, meaning feedback from the pool of background neurons stabilizes what would otherwise be an unstable state. We suggest that dynamical stabilization may be a strategy used for a broad range of computations, not just those involving attractors.


1992 ◽  
Vol 82 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Arieh Bomzon ◽  
Avraham Weinbroum ◽  
Laurence M. Blendis

1. Systemic hypotension, blunted cardiovascular responsiveness to noradrenaline and an abnormal hypertensive pressor response to a postural change have been described in cirrhotic patients. 2. We have examined the role of blunted responsiveness in these abnormalities by studying basal arterial blood pressure and its response to a postural change (vertical head-up 90° tilting) in conscious and pithed CCl4-treated (cirrhotic) rats, as well as assessing the pressor response to noradrenaline in vivo and the vascular contractile response to noradrenaline in vitro. 3. A diminished hypotensive response to a change in posture was found in pre-cirrhotic portal hypertensive rats, whereas an inverted hypertensive pressor response in the face of systemic hypotension occurred in the cirrhotic rats with portal hypertension. 4. The inverted pressor response was abolished in the pithed portal hypertensive cirrhotic rats. 5. The pressor response to noradrenaline in vivo in conscious cirrhotic rats and the vascular contractile responsiveness to noradrenaline in vitro were intact. 6. We conclude that blunted responsiveness to noradrenaline is not a contributory factor to the development of systemic hypotension or the inverted pressor response to a change in posture in cirrhosis.


2014 ◽  
Author(s):  
Qiaojie Xiong ◽  
Petr Znamenskiy ◽  
Anthony Zador

Perceptual decisions are based on the activity of sensory cortical neurons, but how organisms learn to transform this activity into appropriate actions remains unknown. Projections from the auditory cortex to the auditory striatum carry information that drives decisions in an auditory frequency discrimination task1. To assess the role of these projections in learning, we developed a Channelrhodopsin-2-based assay to selectively probe for synaptic plasticity associated with corticostriatal neurons representing different frequencies. Here we report that learning this auditory discrimination preferentially potentiates corticostriatal synapses from neurons representing either high or low frequencies, depending on reward contingencies. We observed frequency-dependent corticostriatal potentiation in vivo over the course of training, and in vitro in striatal brain slices. Our findings suggest a model in which selective potentiation of inputs representing different components of a sensory stimulus enables the learned transformation of sensory input into actions.


2016 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Ralf Wessel

A primary goal of systems neuroscience is to understand cortical function, which typically involves studying spontaneous and sensory-evoked cortical activity. Mounting evidence suggests a strong and complex relationship between the ongoing and evoked state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope; it records the activities of a minority of neurons, and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but are difficult to obtain in vivo. Here, we record subthreshold cortical visual responses in the ex vivo turtle eye-attached whole-brain preparation, which is ideally-suited to such a study. In the absence of visual stimulation, the network is “synchronous”; neurons display network-mediated transitions between low- and high-conductance membrane potential states. The prevalence of these slow-wave transitions varies across turtles and recording sessions. Visual stimulation evokes similar high-conductance states, which are on average larger and less reliable when the ongoing state is more synchronous. Responses are muted when immediately preceded by large, spontaneous high-conductance events. Evoked spiking is sparse, highly variable across trials, and mediated by concerted synaptic inputs that are in general only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons.


1998 ◽  
Vol 79 (1) ◽  
pp. 483-490 ◽  
Author(s):  
Mircea Steriade ◽  
Igor Timofeev ◽  
Niklaus Dürmüller ◽  
François Grenier

Steriade, Mircea, Igor Timofeev, Niklaus Dürmüller, and François Grenier. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike-bursts. J. Neurophysiol. 79: 483–490, 1998. Fast spontaneous oscillations (mainly 30–40 Hz) characterize cortical and thalamic neuronal networks during behavioral states of increased vigilance and depend on cell depolarization under the influence of ascending activating systems. We investigated, by means of intracellular recording and staining in vivo, the properties of fast-oscillating cortical neurons from cat's motor and association areas, some projecting to the thalamus, others with locally arborizing axons. At a given level of depolarization, 28% of our neuronal sample discharged high-frequency spike bursts (300–600 Hz) that recurred rhythmically between 20 and 50 Hz. Such fast rhythmic bursting neurons have been found in both superficial and deep cortical layers. Slight changes in membrane potential as well as synaptic activity in thalamocortical networks dramatically altered the discharge patterns, from single spikes to rhythmic spike-bursts, and eventually to fast tonic firing without frequency adaptation. Thus our data challenge the conventional idea that sharply defined, invariant features and distinct locations in certain cortical layers characterize some neocortical cell-classes. We demonstrate that the distinctions between intrinsic electrophysiological properties of neocortical neurons are much more labile than conventionally thought. The present results, which indicate that corticothalamic neurons discharge fast rhythmic spike bursts mainly at 30–40 Hz, suggest that this activity results in integrated fast oscillations within corticothalamic networks.


Author(s):  
Lena Will ◽  
Sybren Portegies ◽  
Jasper van Schelt ◽  
Merel van Luyk ◽  
Dick Jaarsma ◽  
...  

Abstract For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Carmen Navarro-González ◽  
Alba Huerga-Gómez ◽  
Pietro Fazzari

The schizophrenia risk gene NRG1 controls the formation of excitatory and inhibitory synapses in cortical circuits. While the expression of different NRG1 isoforms occurs during development, adult neurons primarily express the CRD-NRG1 isoform characterized by a highly conserved intracellular domain (NRG1-ICD). We and others have demonstrated that Nrg1 intracellular signaling promotes dendrite elongation and excitatory connections during neuronal development. However, the role of Nrg1 intracellular signaling in adult neurons and pathological conditions remains largely unaddressed. Here, we investigated the role of Nrg1 intracellular signaling in neuroprotection and stroke. Our bioinformatic analysis revealed the evolutionary conservation of the NRG1-ICD and a decrease in NRG1 expression with age in the human frontal cortex. Hence, we first evaluated whether Nrg1 signaling may affect pathological hallmarks in an in vitro model of neuronal senescence; however, our data failed to reveal a role for Nrg1 in the activation of the stress-related pathway p38 MAPK and DNA damage. Previous studies demonstrated that the soluble EGF domain of Nrg1 alleviated brain ischemia, a pathological process involving the generation of free radicals, reactive oxygen species (ROS), and excitotoxicity. Hence, we tested the hypothesis that Nrg1 intracellular signaling could be neuroprotective in stroke. We discovered that Nrg1 expression significantly increased neuronal survival upon oxygen-glucose deprivation (OGD), an established in vitro model for stroke. Notably, the specific activation of Nrg1 intracellular signaling by expression of the Nrg1-ICD protected neurons from OGD. Additionally, time-lapse experiments confirmed that Nrg1 intracellular signaling increased the survival of neurons exposed to OGD. Finally, we investigated the relevance of Nrg1 intracellular signaling in stroke in vivo. Using viral vectors, we expressed the Nrg1-ICD in cortical neurons and subsequently challenged them by a focal hemorrhagic stroke; our data indicated that Nrg1 intracellular signaling improved neuronal survival in the infarcted area. Altogether, these data highlight Nrg1 intracellular signaling as neuroprotective upon ischemic lesion both in vitro and in vivo. Given the complexity of the neurotoxic effects of stroke and the involvement of various mechanisms, such as the generation of ROS, excitotoxicity, and inflammation, further studies are required to determine the molecular bases of the neuroprotective effect of Nrg1 intracellular signaling. In conclusion, our research highlights the stimulation of Nrg1 intracellular signaling as a promising target for cortical stroke treatment.


2021 ◽  
Vol 118 (14) ◽  
pp. e2011140118
Author(s):  
Patrick Sweeney ◽  
Can Chen ◽  
Indika Rajapakse ◽  
Roger D. Cone

Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.


Sign in / Sign up

Export Citation Format

Share Document