scholarly journals White Matter Network Architecture Guides Direct Electrical Stimulation Through Optimal State Transitions

2018 ◽  
Author(s):  
Jennifer Stiso ◽  
Ankit N. Khambhati ◽  
Tommaso Menara ◽  
Ari E. Kahn ◽  
Joel M. Stein ◽  
...  

AbstractElectrical brain stimulation is currently being investigated as a potential therapy for neurological disease. However, opportunities to optimize and personalize such therapies are challenged by the fact that the beneficial impact (and potential side effects) of focal stimulation on both neighboring and distant regions is not well understood. Here, we use network control theory to build a formal model of brain network function that makes explicit predictions about how stimulation spreads through the brain’s white matter network and influences large-scale dynamics. We test these predictions using combined electrocorticography (ECoG) and diffusion weighted imaging (DWI) data from patients with medically refractory epilepsy undergoing evaluation for resective surgery, and who volunteered to participate in an extensive stimulation regimen. We posit a specific model-based manner in which white matter tracts constrain stimulation, defining its capacity to drive the brain to new states, including states associated with successful memory encoding. In a first validation of our model, we find that the true pattern of white matter tracts can be used to more accurately predict the state transitions induced by direct electrical stimulation than the artificial patterns of a topological or spatial network null model. We then use a targeted optimal control framework to solve for the optimal energy required to drive the brain to a given state. We show that, intuitively, our model predicts larger energy requirements when starting from states that are farther away from a target memory state. We then suggest testable hypotheses about which structural properties will lead to efficient stimulation for improving memory based on energy requirements. We show that the strength and homogeneity of edges between controlled and uncontrolled nodes, as well as the persistent modal controllability of the stimulated region, predict energy requirements. Our work demonstrates that individual white matter architecture plays a vital role in guiding the dynamics of direct electrical stimulation, more generally offering empirical support for the utility of network control theoretic models of brain response to stimulation.

Cell Reports ◽  
2019 ◽  
Vol 28 (10) ◽  
pp. 2554-2566.e7 ◽  
Author(s):  
Jennifer Stiso ◽  
Ankit N. Khambhati ◽  
Tommaso Menara ◽  
Ari E. Kahn ◽  
Joel M. Stein ◽  
...  

2013 ◽  
Author(s):  
Graeme E Smith

The Angular Gyrus sits at the point where the Temporal and Parietal Lobes join. It is a point where integrative processes link together the Where and What pathways through the brain and link them to time. It is also the most likely location for at least two centers of consciousness. In this article the location is discussed and it's potential for a model of consciousness that replaces the Declarative Memory Model of Consciousness previously put forward. It's main benefit over the Declarative Memory Model of Consciousness is that it allows for the preservation of consciousness despite the loss of declarative memory in the cases of Medial Temporal Lobe injury/disease. However Connectome studies might support this model in that the TemporoParietal Fiber Intersection Area provides 7 different white matter tracts that intersect in this area.


2020 ◽  
Vol 61 (12) ◽  
pp. 1684-1694
Author(s):  
Artemis Andrianopoulou ◽  
Anastasia K Zikou ◽  
Loukas G Astrakas ◽  
Nafsika Gerolymatou ◽  
Vasileios Xydis ◽  
...  

Background Fatigue and depression are among the most common manifestations of primary Sjögren syndrome (pSS), but information is lacking on the relationship with brain function and microstructural changes. Purpose To investigate microstructural changes and brain connectivity in pSS, and to evaluate their relationship with fatigue and depression. Material and Methods The study included 29 patients with pSS (mean age 61.2 ± 12.1 years; disease duration 10.5 ± 5.9 years) and 28 controls (mean age 58.4 ± 9.2 years). All the patients completed the Beck’s depression and Fatigue Assessment Scale questionnaires. The imaging protocol consisted of: (i) standard magnetic resonance imaging (MRI) pulse sequences (FLAIR, 3D T1W); (ii) a diffusion tensor imaging pulse sequence; and (iii) a resting state functional MRI pulse sequence. Resting state brain networks and maps of diffusion metrics were calculated and compared between patients and controls. Results Compared with the controls, the patients with pSS and depression showed increased axial, radial, and mean diffusivity and decreased fractional anisotropy; those without depression showed decreased axial diffusivity in major white matter tracts (superior longitudinal fasciculus, inferior longitudinal fasciculus, corticospinal tract, anterior thalamic radiation, inferior fronto-occipital fasciculus, cingulum, uncinate fasciculus, and forceps minor-major). Decreased brain activation in the sensorimotor network was observed in the patients with pSS compared with the controls. No correlation was found between fatigue and structural or functional changes of the brain. Conclusion pSS is associated with functional connectivity abnormalities of the somatosensory cortex and microstructural abnormalities in major white matter tracts, which are more pronounced in depression.


1984 ◽  
Vol 4 (3) ◽  
pp. 447-457 ◽  
Author(s):  
Eörs Dóra ◽  
Ákos Koller ◽  
Arisztid G. B. Kovách

The purpose of this study was to investigate the possible importance of adenosine in cerebrocortical vasodilatation accompanying brain activation (epileptic seizures and direct electrical stimulation) and hypoxia (arterial hypoxia and cyanide poisoning of the brain cortex). In chloralose-anesthetized cats a circumscribed area of the brain cortex was treated with adenosine deaminase (Type III; Sigma), which potently deaminates adenosine to the nonvasoactive inosine. Cerebrocortical vascular volume and fluorescence of reduced nicotinamide adenine dinucleotide were measured in vivo by surface fluororeflectometry. The responses of small pial and intracortical vessels to brain activation and hypoxia were studied in brain cortices superfused with artificial (mock) CSF and 5 U/ml adenosine deaminase. It was found that superficially applied adenosine deaminase readily diffuses onto the brain cortex. Prolonged pretreatment of the brain cortices with 0.025 U/ml adenosine deaminase eliminated almost completely the vasodilative effect of 10−7 mol/ml adenosine. The inhibitory effect of the enzyme on adenosine-induced cortical vasodilatation was specific, because 5 U/ml adenosine deaminase did not attenuate the vasodilative potency of 10−8 mol/ml 2-chloroadenosine. Adenosine deaminase (5 U/ml) pretreatment of the brain cortices did not diminish the cerebrocortical vascular volume, which increased with arterial hypoxia, topical cyanide poisoning, and direct electrical stimulation. However, it slightly decreased the vasodilative effect of epileptic seizures. On the basis of these results, it seems very unlikely that adenosine is a critical factor in the control of cerebrovascular tone during arterial hypoxia and brain activation.


2016 ◽  
Vol 27 (3) ◽  
pp. 231-258 ◽  
Author(s):  
Marion Vincent ◽  
Olivier Rossel ◽  
Mitsuhiro Hayashibe ◽  
Guillaume Herbet ◽  
Hugues Duffau ◽  
...  

AbstractBoth electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the ‘gold standard’ for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).


Sign in / Sign up

Export Citation Format

Share Document