scholarly journals Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill children: a single center pilot study

2018 ◽  
Author(s):  
Sam Ghazal ◽  
Michael Sauthier ◽  
David Brossier ◽  
Wassim Bouachir ◽  
Philippe Jouvet ◽  
...  

AbstractClinicians’ experts in mechanical ventilation are not continuously at each patient’s bedside in an intensive care unit to adjust mechanical ventilation settings and to analyze the impact of ventilator settings adjustments on gas exchange. The development of clinical decision support systems analyzing patients’ data in real time offers an opportunity to fill this gap. The objective of this study was to determine whether a machine learning predictive model could be trained on a set of clinical data and used to predict hemoglobin oxygen saturation 5 min after a ventilator setting change. Data of mechanically ventilated children admitted between May 2015 and April 2017 were included and extracted from a high-resolution research database. More than 7.105 rows of data were obtained from 610 patients, discretized into 3 class labels. Due to data imbalance, four different data balancing process were applied and two machine learning models (artificial neural network and Bootstrap aggregation of complex decision trees) were trained and tested on these four different balanced datasets. The best model predicted SpO2 with accuracies of 76%, 62% and 96% for the SpO2 class “< 84%”, “85 to 91%” and “> 92%”, respectively. This pilot study using machine learning predictive model resulted in an algorithm with good accuracy. To obtain a robust algorithm, more data are needed, suggesting the need of multicenter pediatric intensive care high resolution databases.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J A Ortiz ◽  
R Morales ◽  
B Lledo ◽  
E Garcia-Hernandez ◽  
A Cascales ◽  
...  

Abstract Study question Is it possible to predict the likelihood of an IVF embryo being aneuploid and/or mosaic using a machine learning algorithm? Summary answer There are paternal, maternal, embryonic and IVF-cycle factors that are associated with embryonic chromosomal status that can be used as predictors in machine learning models. What is known already The factors associated with embryonic aneuploidy have been extensively studied. Mostly maternal age and to a lesser extent male factor and ovarian stimulation have been related to the occurrence of chromosomal alterations in the embryo. On the other hand, the main factors that may increase the incidence of embryo mosaicism have not yet been established. The models obtained using classical statistical methods to predict embryonic aneuploidy and mosaicism are not of high reliability. As an alternative to traditional methods, different machine and deep learning algorithms are being used to generate predictive models in different areas of medicine, including human reproduction. Study design, size, duration The study design is observational and retrospective. A total of 4654 embryos from 1558 PGT-A cycles were included (January-2017 to December-2020). The trophoectoderm biopsies on D5, D6 or D7 blastocysts were analysed by NGS. Embryos with ≤25% aneuploid cells were considered euploid, between 25-50% were classified as mosaic and aneuploid with &gt;50%. The variables of the PGT-A were recorded in a database from which predictive models of embryonic aneuploidy and mosaicism were developed. Participants/materials, setting, methods The main indications for PGT-A were advanced maternal age, abnormal sperm FISH and recurrent miscarriage or implantation failure. Embryo analysis were performed using Veriseq-NGS (Illumina). The software used to carry out all the analysis was R (RStudio). The library used to implement the different algorithms was caret. In the machine learning models, 22 predictor variables were introduced, which can be classified into 4 categories: maternal, paternal, embryonic and those specific to the IVF cycle. Main results and the role of chance The different couple, embryo and stimulation cycle variables were recorded in a database (22 predictor variables). Two different predictive models were performed, one for aneuploidy and the other for mosaicism. The predictor variable was of multi-class type since it included the segmental and whole chromosome alteration categories. The dataframe were first preprocessed and the different classes to be predicted were balanced. A 80% of the data were used for training the model and 20% were reserved for further testing. The classification algorithms applied include multinomial regression, neural networks, support vector machines, neighborhood-based methods, classification trees, gradient boosting, ensemble methods, Bayesian and discriminant analysis-based methods. The algorithms were optimized by minimizing the Log_Loss that measures accuracy but penalizing misclassifications. The best predictive models were achieved with the XG-Boost and random forest algorithms. The AUC of the predictive model for aneuploidy was 80.8% (Log_Loss 1.028) and for mosaicism 84.1% (Log_Loss: 0.929). The best predictor variables of the models were maternal age, embryo quality, day of biopsy and whether or not the couple had a history of pregnancies with chromosomopathies. The male factor only played a relevant role in the mosaicism model but not in the aneuploidy model. Limitations, reasons for caution Although the predictive models obtained can be very useful to know the probabilities of achieving euploid embryos in an IVF cycle, increasing the sample size and including additional variables could improve the models and thus increase their predictive capacity. Wider implications of the findings Machine learning can be a very useful tool in reproductive medicine since it can allow the determination of factors associated with embryonic aneuploidies and mosaicism in order to establish a predictive model for both. To identify couples at risk of embryo aneuploidy/mosaicism could benefit them of the use of PGT-A. Trial registration number Not Applicable


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 330-330
Author(s):  
Teja Ganta ◽  
Stephanie Lehrman ◽  
Rachel Pappalardo ◽  
Madalene Crow ◽  
Meagan Will ◽  
...  

330 Background: Machine learning models are well-positioned to transform cancer care delivery by providing oncologists with more accurate or accessible information to augment clinical decisions. Many machine learning projects, however, focus on model accuracy without considering the impact of using the model in real-world settings and rarely carry forward to clinical implementation. We present a human-centered systems engineering approach to address clinical problems with workflow interventions utilizing machine learning algorithms. Methods: We aimed to develop a mortality predictive tool, using a Random Forest algorithm, to identify oncology patients at high risk of death within 30 days to move advance care planning (ACP) discussions earlier in the illness trajectory. First, a project sponsor defined the clinical need and requirements of an intervention. The data scientists developed the predictive algorithm using data available in the electronic health record (EHR). A multidisciplinary workgroup was assembled including oncology physicians, advanced practice providers, nurses, social workers, chaplain, clinical informaticists, and data scientists. Meeting bi-monthly, the group utilized human-centered design (HCD) methods to understand clinical workflows and identify points of intervention. The workgroup completed a workflow redesign workshop, a 90-minute facilitated group discussion, to integrate the model in a future state workflow. An EHR (Epic) analyst built the user interface to support the intervention per the group’s requirements. The workflow was piloted in thoracic oncology and bone marrow transplant with plans to scale to other cancer clinics. Results: Our predictive model performance on test data was acceptable (sensitivity 75%, specificity 75%, F-1 score 0.71, AUC 0.82). The workgroup identified a “quality of life coordinator” who: reviews an EHR report of patients scheduled in the upcoming 7 days who have a high risk of 30-day mortality; works with the oncology team to determine ACP clinical appropriateness; documents the need for ACP; identifies potential referrals to supportive oncology, social work, or chaplain; and coordinates the oncology appointment. The oncologist receives a reminder on the day of the patient’s scheduled visit. Conclusions: This workgroup is a viable approach that can be replicated at institutions to address clinical needs and realize the full potential of machine learning models in healthcare. The next steps for this project are to address end-user feedback from the pilot, expand the intervention to other cancer disease groups, and track clinical metrics.


Elements ◽  
2016 ◽  
Vol 12 (2) ◽  
Author(s):  
James LeDoux

<p>The new NFL extra point rule first implemented in the 2015 season requires a kicker to attempt his extra point with the ball snapped from the 15-yard line. This attempt stretches an extra point to the equivalent of a 32-yard field goal attempt, 13 yards longer than under the previous rule. Though a 32-yard attempt is still a chip shot to any professional kicker, many NFL analysts were surprised to see the number of extra points that were missed. Should this really have been a surprise, though? Beginning with a replication of a study by Clark et. al, this study aims to explore the world of NFL kicking from a statistical perspective, applying econometric and machine learning models to display a deeper perspective on what exactly makes some field goal attempts more difficult than others. Ultimately, the goal is to go beyond the previous research on this topic, providing an improved predictive model of field goal success and a better metric for evaluating placekicker ability.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249285
Author(s):  
Limin Yu ◽  
Alexandra Halalau ◽  
Bhavinkumar Dalal ◽  
Amr E. Abbas ◽  
Felicia Ivascu ◽  
...  

Background The Coronavirus disease 2019 (COVID-19) pandemic has affected millions of people across the globe. It is associated with a high mortality rate and has created a global crisis by straining medical resources worldwide. Objectives To develop and validate machine-learning models for prediction of mechanical ventilation (MV) for patients presenting to emergency room and for prediction of in-hospital mortality once a patient is admitted. Methods Two cohorts were used for the two different aims. 1980 COVID-19 patients were enrolled for the aim of prediction ofMV. 1036 patients’ data, including demographics, past smoking and drinking history, past medical history and vital signs at emergency room (ER), laboratory values, and treatments were collected for training and 674 patients were enrolled for validation using XGBoost algorithm. For the second aim to predict in-hospital mortality, 3491 hospitalized patients via ER were enrolled. CatBoost, a new gradient-boosting algorithm was applied for training and validation of the cohort. Results Older age, higher temperature, increased respiratory rate (RR) and a lower oxygen saturation (SpO2) from the first set of vital signs were associated with an increased risk of MV amongst the 1980 patients in the ER. The model had a high accuracy of 86.2% and a negative predictive value (NPV) of 87.8%. While, patients who required MV, had a higher RR, Body mass index (BMI) and longer length of stay in the hospital were the major features associated with in-hospital mortality. The second model had a high accuracy of 80% with NPV of 81.6%. Conclusion Machine learning models using XGBoost and catBoost algorithms can predict need for mechanical ventilation and mortality with a very high accuracy in COVID-19 patients.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Antonin Dauvin ◽  
Carolina Donado ◽  
Patrik Bachtiger ◽  
Ke-Chun Huang ◽  
Christopher Martin Sauer ◽  
...  

AbstractPatients admitted to the intensive care unit frequently have anemia and impaired renal function, but often lack historical blood results to contextualize the acuteness of these findings. Using data available within two hours of ICU admission, we developed machine learning models that accurately (AUC 0.86–0.89) classify an individual patient’s baseline hemoglobin and creatinine levels. Compared to assuming the baseline to be the same as the admission lab value, machine learning performed significantly better at classifying acute kidney injury regardless of initial creatinine value, and significantly better at predicting baseline hemoglobin value in patients with admission hemoglobin of <10 g/dl.


Seizure ◽  
2021 ◽  
Author(s):  
Jian Hu ◽  
France W. Fung ◽  
Marin Jacobwitz ◽  
Darshana S. Parikh ◽  
Lisa Vala ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 310
Author(s):  
Qing Shuang ◽  
Rui Ting Zhao

Predicting water demand helps decision-makers allocate regional water resources efficiently, thereby preventing water waste and shortage. The aim of this study is to predict water demand in the Beijing–Tianjin–Hebei region of North China. The explanatory variables associated with economy, community, water use, and resource availability were identified. Eleven statistical and machine learning models were built, which used data covering the 2004–2019 period. Interpolation and extrapolation scenarios were conducted to find the most suitable predictive model. The results suggest that the gradient boosting decision tree (GBDT) model demonstrates the best prediction performance in the two scenarios. The model was further tested for three other regions in China, and its robustness was validated. The water demand in 2020–2021 was provided. The results show that the identified explanatory variables were effective in water demand prediction. The machine learning models outperformed the statistical models, with the ensemble models being superior to the single predictor models. The best predictive model can also be applied to other regions to help forecast water demand to ensure sustainable water resource management.


Author(s):  
So Yeon Lee ◽  
Sang Tak Lee ◽  
Sungill Suh ◽  
Bum Jun Ko ◽  
Han Bin Oh

Abstract High-resolution liquid chromatography (LC)–tandem mass spectrometry (MS-MS)-based machine learning models are constructed to address the analytical challenge of identifying unknown controlled substances and new psychoactive substances (NPSs). Using a training set composed of 770 LC–MS-MS barcode spectra (with binary entries 0 or 1) obtained generally by high-resolution mass spectrometers, three classification machine learning models were generated and evaluated. The three models are artificial neural network (ANN), support vector machine (SVM) and k-nearest neighbor (k-NN) models. In these models, controlled substances and NPSs were classified into 13 subgroups (benzylpiperazine, opiate, benzodiazepine, amphetamine, cocaine, methcathinone, classical cannabinoid, fentanyl, 2C series, indazole carbonyl compound, indole carbonyl compound, phencyclidine and others). Using 193 LC–MS-MS barcode spectra as an external test set, accuracy of the ANN, SVM and k-NN models were evaluated as 72.5%, 90.0% and 94.3%, respectively. Also, the hybrid similarity search (HSS) algorithm was evaluated to examine whether this algorithm can successfully identify unknown controlled substances and NPSs whose data are unavailable in the database. When only 24 representative LC–MS-MS spectra of controlled substances and NPSs were selectively included in the database, it was found that HSS can successfully identify compounds with high reliability. The machine learning models and HSS algorithms are incorporated into our home-coded artificial intelligence screener for narcotic drugs and psychotropic substances standalone software that is equipped with a graphic user interface. The use of this software allows unknown controlled substances and NPSs to be identified in a convenient manner.


Sign in / Sign up

Export Citation Format

Share Document