scholarly journals Structural analysis of the interaction between the bacterial cell division proteins FtsQ and FtsB

2018 ◽  
Author(s):  
Danguole Kureisaite-Ciziene ◽  
Aravindan Varadajan ◽  
Stephen H. McLaughlin ◽  
Marjolein Glas ◽  
Alejandro Montón Silva ◽  
...  

AbstractMost bacteria and archaea use similar proteins within their cell division machinery, which uses the tubulin homologue FtsZ as its central organiser. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. In biochemical assays we show that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the β domain of FtsQ shows that only residues 64-87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ:FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ:FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalising view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches.ImportanceCells in most bacteria and archaea divide through a cell division process that is characterised through its filamentous organiser, FtsZ protein. FtsZ forms a ring structure at the division site and starts the recruitment of 10-20 downstream proteins that together form an elusive multi-protein complex termed divisome. The divisome is thought to facilitate many of the steps required to make two cells out of one. FtsQ and FtsB are part of the divisome, with FtsQ being a central hub, interacting with most of the other divisome components. Here we show for the first time how FtsQ interacts with its downstream partner FtsB and show that mutations that disturb the interface between the two proteins effectively inhibit cell division.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Danguole Kureisaite-Ciziene ◽  
Aravindan Varadajan ◽  
Stephen H. McLaughlin ◽  
Marjolein Glas ◽  
Alejandro Montón Silva ◽  
...  

ABSTRACT Most bacteria and archaea use the tubulin homologue FtsZ as its central organizer of cell division. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic, and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. We show in biochemical assays that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the β domain of FtsQ shows that only residues 64 to 87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ-FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ-FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalizing view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches. IMPORTANCE In most bacteria and archaea, filaments of FtsZ protein organize cell division. FtsZ forms a ring structure at the division site and starts the recruitment of 10 to 20 downstream proteins that together form a multiprotein complex termed the divisome. The divisome is thought to facilitate many of the steps required to make two cells out of one. FtsQ and FtsB are part of the divisome, with FtsQ being a central hub, interacting with most of the other divisome components. Here we show for the first time in detail how FtsQ interacts with its downstream partner FtsB and show that mutations that disturb the interface between the two proteins effectively inhibit cell division.


2020 ◽  
Vol 295 (52) ◽  
pp. 18256-18265
Author(s):  
Adrien Boes ◽  
Frederic Kerff ◽  
Raphael Herman ◽  
Thierry Touze ◽  
Eefjan Breukink ◽  
...  

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75–Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.


2021 ◽  
Vol 22 (15) ◽  
pp. 8350
Author(s):  
Naďa Labajová ◽  
Natalia Baranova ◽  
Miroslav Jurásek ◽  
Robert Vácha ◽  
Martin Loose ◽  
...  

DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.


Author(s):  
William R. Cook ◽  
Piet A.J. de Boer ◽  
Lawrence I. Rothfield

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fenghui Guan ◽  
Jiayu Yu ◽  
Jie Yu ◽  
Yang Liu ◽  
Ying Li ◽  
...  

The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.


2020 ◽  
Author(s):  
Miguel Ángel Robles-Ramos ◽  
Silvia Zorrilla ◽  
Carlos Alfonso ◽  
William Margolin ◽  
Germán Rivas ◽  
...  

Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed FtsZ, a protein essential for cytokinesis in most bacteria, and the E. coli division site selection factor SlmA form FtsZ∙SlmA biomolecular condensates. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion or SlmA-containing bacteria. Here we report that FtsZ alone can demix into condensates in bulk and when encapsulated in synthetic cell-like systems. Condensate assembly depends on FtsZ being in the GDP-bound state and on crowding conditions that promote its oligomerization. FtsZ condensates are dynamic and gradually convert into FtsZ filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial cell division than initially envisioned.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Paulo Caldas ◽  
Mar López-Pelegrín ◽  
Daniel J. G. Pearce ◽  
Nazmi Burak Budanur ◽  
Jan Brugués ◽  
...  

AbstractDuring bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This Z-ring not only organizes the division machinery, but treadmilling of FtsZ filaments was also found to play a key role in distributing proteins at the division site. What regulates the architecture, dynamics and stability of the Z-ring is currently unknown, but FtsZ-associated proteins are known to play an important role. Here, using an in vitro reconstitution approach, we studied how the well-conserved protein ZapA affects FtsZ treadmilling and filament organization into large-scale patterns. Using high-resolution fluorescence microscopy and quantitative image analysis, we found that ZapA cooperatively increases the spatial order of the filament network, but binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Together, our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a switch-like manner.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Sónia Castanheira ◽  
Juan J. Cestero ◽  
Gadea Rico-Pérez ◽  
Pablo García ◽  
Felipe Cava ◽  
...  

ABSTRACT Bacterial cell division has been studied extensively under laboratory conditions. Despite being a key event in the bacterial cell cycle, cell division has not been explored in vivo in bacterial pathogens interacting with their hosts. We discovered in Salmonella enterica serovar Typhimurium a gene absent in nonpathogenic bacteria and encoding a peptidoglycan synthase with 63% identity to penicillin-binding protein 3 (PBP3). PBP3 is an essential cell division-specific peptidoglycan synthase that builds the septum required to separate daughter cells. Since S. Typhimurium carries genes that encode a PBP3 paralog—which we named PBP3SAL—and PBP3, we hypothesized that there are different cell division events in host and nonhost environments. To test this, we generated S. Typhimurium isogenic mutants lacking PBP3SAL or the hitherto considered essential PBP3. While PBP3 alone promotes cell division under all conditions tested, the mutant producing only PBP3SAL proliferates under acidic conditions (pH ≤ 5.8) but does not divide at neutral pH. PBP3SAL production is tightly regulated with increased levels as bacteria grow in media acidified up to pH 4.0 and in intracellular bacteria infecting eukaryotic cells. PBP3SAL activity is also strictly dependent on acidic pH, as shown by beta-lactam antibiotic binding assays. Live-cell imaging microscopy revealed that PBP3SAL alone is sufficient for S. Typhimurium to divide within phagosomes of the eukaryotic cell. Additionally, we detected much larger amounts of PBP3SAL than those of PBP3 in vivo in bacteria colonizing mouse target organs. Therefore, PBP3SAL evolved in S. Typhimurium as a specialized peptidoglycan synthase promoting cell division in the acidic intraphagosomal environment. IMPORTANCE During bacterial cell division, daughter cells separate by a transversal structure known as the division septum. The septum is a continuum of the cell wall and therefore is composed of membrane(s) and a peptidoglycan layer. To date, actively growing bacteria were reported to have only a “cell division-specific” peptidoglycan synthase required for the last steps of septum formation and consequently, essential for bacterial life. Here, we discovered that Salmonella enterica has two peptidoglycan synthases capable of synthesizing the division septum. One of these enzymes, PBP3SAL, is present only in bacterial pathogens and evolved in Salmonella to function exclusively in acidic environments. PBP3SAL is used preferentially by Salmonella to promote cell division in vivo in mouse target organs and inside acidified phagosomes. Our data challenge the concept of only one essential cell division-specific peptidoglycan synthase and demonstrate that pathogens can divide in defined host locations using alternative mechanisms. IMPORTANCE During bacterial cell division, daughter cells separate by a transversal structure known as the division septum. The septum is a continuum of the cell wall and therefore is composed of membrane(s) and a peptidoglycan layer. To date, actively growing bacteria were reported to have only a “cell division-specific” peptidoglycan synthase required for the last steps of septum formation and consequently, essential for bacterial life. Here, we discovered that Salmonella enterica has two peptidoglycan synthases capable of synthesizing the division septum. One of these enzymes, PBP3SAL, is present only in bacterial pathogens and evolved in Salmonella to function exclusively in acidic environments. PBP3SAL is used preferentially by Salmonella to promote cell division in vivo in mouse target organs and inside acidified phagosomes. Our data challenge the concept of only one essential cell division-specific peptidoglycan synthase and demonstrate that pathogens can divide in defined host locations using alternative mechanisms.


2000 ◽  
Vol 182 (18) ◽  
pp. 5153-5166 ◽  
Author(s):  
Cynthia A. Hale ◽  
Amy C. Rhee ◽  
Piet A. J. de Boer

ABSTRACT FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA− cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor.


Sign in / Sign up

Export Citation Format

Share Document