scholarly journals Transcriptome-wide association supplements genome-wide association in Zea mays

2018 ◽  
Author(s):  
Karl A. G. Kremling ◽  
Christine H. Diepenbrock ◽  
Michael A. Gore ◽  
Edward S. Buckler ◽  
Nonoy B. Bandillo

AbstractModern improvement of complex traits in agricultural species relies on successful associations of heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been based on easily measurable genetic markers. The recent advent of new technologies allows assaying and quantifying biological intermediates (hereafter endophenotypes) which are now readily measurable at a large scale across diverse individuals. The potential of using endophenotypes for dissecting traits of interest remains underexplored in plants. The work presented here illustrated the utility of a large-scale (299 genotype and 7 tissue) gene expression resource to dissect traits across multiple levels of biological organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies (TWAS), we revealed that about half of the functional variation for agronomic and seed quality (carotenoid, tocochromanol) traits is regulatory. Comparing the efficacy of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase the power to detect known genes and aid in prioritizing likely causal genes. Using a variance partitioning approach in the independent maize Nested Association Mapping (NAM) population, we also showed that the most strongly associated genes identified by combining GWAS and TWAS explain more heritable variance for a majority of traits, beating the heritability captured by the random genes and the genes identified by GWAS or TWAS alone. This improves not only the ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory variation in plants.Author summaryWe examined the ability to associate variability in gene expression directly with terminal phenotypes of interest, as a supplement linking genotype to phenotype. We found that transcriptome-wide association studies (TWAS) are a useful accessory to genome-wide association studies (GWAS). In a combined test with GWAS results, TWAS improves the capacity to re-detect genes known to underlie quantitative trait loci for kernel and agronomic phenotypes. This improves not only the capacity to link genes to phenotypes, but also illustrates the widespread importance of regulation for phenotype.


2016 ◽  
Author(s):  
Nicholas Mancuso ◽  
Huwenbo Shi ◽  
Pagé Goddard ◽  
Gleb Kichaev ◽  
Alexander Gusev ◽  
...  

AbstractAlthough genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. We leverage recently introduced methods to integrate gene expression measurements from 45 expression panels with summary GWAS data to perform 30 transcriptome-wide association studies (TWASs). We identify 1,196 susceptibility genes whose expression is associated with these traits; of these, 168 reside more than 0.5Mb away from any previously reported GWAS significant variant, thus providing new risk loci. Second, we find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, 8 are not found through genetic correlation at the SNP level. Third, we use bi-directional regression to find evidence for BMI causally influencing triglyceride levels, and triglyceride levels causally influencing LDL. Taken together, our results provide insights into the role of expression to susceptibility of complex traits and diseases.



2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Dinesh K. Saini ◽  
Yuvraj Chopra ◽  
Jagmohan Singh ◽  
Karansher S. Sandhu ◽  
Anand Kumar ◽  
...  


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.



Author(s):  
Nasa Sinnott-Armstrong ◽  
Sahin Naqvi ◽  
Manuel Rivas ◽  
Jonathan K Pritchard

SummaryGenome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. However, for most traits it remains difficult to interpret what genes and biological processes are impacted by the top hits. Here, as a contrast, we describe UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are biologically simpler than most diseases, and for which we know a great deal in advance about the core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that most top hits are readily interpretable. We observe huge enrichment of significant signals near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of variation in each trait, including insights into differences in testosterone regulation between females and males. Meanwhile, in other respects the results are reminiscent of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic, with most of the variance coming not from core genes, but from thousands to tens of thousands of variants spread across most of the genome. Given that diseases are often impacted by many distinct biological processes, including these three, our results help to illustrate why so many variants can affect risk for any given disease.



2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.



2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.



2020 ◽  
Vol 26 (5) ◽  
pp. 490-500
Author(s):  
A. O. Konradi

The article reviews monogenic forms of hypertension, data on the role of heredity of essential hypertension and candidate genes, as well as genome-wide association studies. Modern approach for the role of genetics is driven by implementation of new technologies and their productivity. High performance speed of new technologies like genome-wide association studies provide data for better knowledge of genetic markers of hypertension. The major goal nowadays for research is to reveal molecular pathways of blood pressure regulation, which can help to move from populational to individual level of understanding of pathogenesis and treatment targets.



Sign in / Sign up

Export Citation Format

Share Document