scholarly journals Does gender influence cardiovascular remodeling in C57BL/6J mice fed a high-fat, high-sucrose, high-salt diet?

2018 ◽  
Author(s):  
Debora Cristina Pereira-Silva ◽  
Rayane Paula Machado-Silva ◽  
Camila Castro-Pinheiro ◽  
Caroline Fernandes-Santos

Animal models are widely used to study the physiopathology of human diseases. However, the influence of gender on modern society diet style-induced cardiovascular disease was not exploited so far. Thus, this study investigated cardiovascular remodeling in C57BL/6J mice fed a diet rich in saturated fat, sucrose, and salt, evaluating gender effect on this process. Male and female C57BL/6J mice were fed AIN93M diet or a modified AIN93M rich in fat, sucrose, and salt (HFSS) for 12 weeks. Body mass, water and food intake and cardiovascular remodeling were assessed. The HFSS diet did not lead to body mass gain or glucose metabolism disturbance assessed by serum glucose, insulin, and oral glucose tolerance test. However, female mice on a HFSS diet had increased visceral and subcutaneous adiposity. Only male mice displayed heart hypertrophy. The left ventricle was not hypertrophied in male and female mice, but its lumen was dilated. Intramyocardial arteries and the thoracic aorta had intima-media thickening in male mice, but in the female, it was only noticed in the thoracic aorta. Finally, intramyocardial artery dilation was present in both genders, but not in the aorta. Changes in LV dimensions and the arterial remodeling were influenced by both gender and the HFSS diet. In conclusion, male and female C57BL/6J mice suffered cardiovascular remodeling after 12 weeks of high-fat, high-sucrose, high-salt feeding, although they did not develop obesity or diabetes. Sexual dimorphism occurred in response to diet for body adiposity, heart hypertrophy, and intramyocardial artery remodeling.

2019 ◽  
Vol 100 (3) ◽  
pp. 153-160 ◽  
Author(s):  
Debora Cristina Pereira‐Silva ◽  
Rayane Paula Machado‐Silva ◽  
Camila Castro‐Pinheiro ◽  
Caroline Fernandes‐Santos

2021 ◽  
Author(s):  
Xiao yu Zou ◽  
Muhammad Ijaz Ahmad ◽  
Di Zhao ◽  
Min Zhang ◽  
Chunbao Li

This study aims to explore how high-fat diet and glutaredoxin1 (Glrx1) deficiency affect the development of obesity in male and female mice. High-fat diet induced great differences in calorie intake...


2020 ◽  
Author(s):  
Yi Zhou ◽  
Chen Li ◽  
Xinyi Wang ◽  
Qinbo Chen ◽  
Pengxi Deng ◽  
...  

Abstract Background: Obesity exhibit sex differences is well established, but its metabolic mechanism remains unclear. Thus, investigation of metabolic pattern of male and female mice with high-fat diet (HFD) is of substantial importance for explore the potential mechanism linking gender differences in obesity.Methods: In the present study, we analyzed the metabolic changes in serum and liver of male and female mice with high-fat diet using nuclear magnetic resonance-based metabolomic approach.Results: Principle component analysis show that the metabolic pattern of serum and liver of male mice with HFD was significantly distinguished from the other groups. Furthermore, the accumulation of low-density lipoprotein/very low-density lipoprotein was found in the serum of male mice with HFD. Moreover, metabolomic results of liver reveal that tricarboxylic acid cycle and amino acid metabolism are increased in female mice with HFD.Conclusion: In conclusion, our results suggest that the differences in energy and amino acid metabolism of males and females were most likely influence the predisposition to obesity.


2019 ◽  
Author(s):  
E. Matthew Morris ◽  
Roberto D. Noland ◽  
Julie A. Allen ◽  
Colin S. McCoin ◽  
Qing Xia ◽  
...  

ABSTRACTObjectiveLong-term weight gain can result from cumulative small weight increases due to short-term excess caloric intake during weekends and holidays. Increased physical activity may mediate weight gain through increases in energy expenditure (EE) and reductions in energy balance. Current methods for modulating mouse EE (e.g. – exercise, chemical uncouplers, etc.) have confounding effects. However, it is known that mouse EE linearly increases as housing temperature decreases below the thermoneutral zone.MethodsTo determine how robust differences in baseline EE impact 7-day changes in weight and body composition on low-fat and high-fat, high-sucrose (HFHS) diets, we performed indirect calorimetry measurements in male and female mice housed at divergent temperatures (20°C vs. 30°C).ResultsAs expected, mice housed at 30°C have ∼40% lower total EE and energy intake compared to 20°C mice regardless of diet or sex. Energy balance was increased with HFHS in all groups, with ∼30% greater increases observed in 30°C versus 20°C mice. HFHS increased weight gain regardless of temperature or sex. Interestingly, no HFHS-induced weight gain differences were observed between females at different temperatures. In contrast, 30°C male mice on HFHS gained ∼50% more weight than 20°C males, and ∼80% more weight compared to 30°C females. HFHS increased fat mass across all groups but 2-fold higher gains occurred in 30°C mice compared to 20°C mice. Females gained ∼35% less fat mass than males at both temperatures.ConclusionsTogether, these data reveal an interaction between divergent ambient temperature-induced EE and sex that impacted diet-induced patterns of short-term weight gain and body composition.HighlightsUtilized ambient temperature differences as an experimental tool to study the impact of divergent baseline energy expenditure on metabolic adaptation to high-fat, high-sucrose diet.Baseline energy expenditure and sex interact to impact diet-induced changes in body composition and weight gain.The energy expenditure and sex interaction is a result of an inverse relationship between fat mass gain and weight-adjusted total energy expenditure, as well as, diet-induced non-shivering thermogenesis.These data support that the hypothesis that higher energy expenditure amplifies the coupling of energy intake to energy expenditure during energy dense feeding, resulting in reduced positive energy balance and reduced gains in weight and adiposity.First evidence that energy expenditure level plays a role in the composition of weight gained by female mice during acute HFHS feeding.This study further highlights issues with obesity/energy metabolism research performed in mice at sub-thermoneutral housing temperatures, particularly with sex comparisons.GRAPHIC ABSTRACTLegend: Male and female mice housed at 30°C had lower energy expenditure (EE) & energy intake (EI), while having greater energy balance (EB), during 7-day high-fat/high-sucrose (HFHS) feeding compared to male and female mice, respectively, housed at 20°C. However, female mice had lower EB compared to males at both housing temperature. Female mice housed at 30°C gained less weight than 30°C males but gained the same relative amount of fat mass during acute HFHS feeding. Interestingly, 20°C females gained the same amount of weight as 20°C males but gained primarily fat-free mass, while the males gained the same proportion of fat as 30°C males and females.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jamaira A. Victorio ◽  
Daniele M. Guizoni ◽  
Israelle N. Freitas ◽  
Thiago R. Araujo ◽  
Ana P. Davel

Increased adiposity in perivascular adipose tissue (PVAT) has been related to vascular dysfunction. High-fat (HF) diet-induced obesity models are often used to analyze the translational impact of obesity, but differences in sex and Western diet type complicate comparisons between studies. The role of PVAT was investigated in small mesenteric arteries (SMAs) of male and female mice fed a HF or a HF plus high-sucrose (HF + HS) diet for 3 or 5 months and compared them to age/sex-matched mice fed a chow diet. Vascular responses of SMAs without (PVAT-) or with PVAT (PVAT+) were evaluated. HF and HF + HS diets increased body weight, adiposity, and fasting glucose and insulin levels without affecting blood pressure and circulating adiponectin levels in both sexes. HF or HF + HS diet impaired PVAT anticontractile effects in SMAs from females but not males. PVAT-mediated endothelial dysfunction in SMAs from female mice after 3 months of a HF + HS diet, whereas in males, this effect was observed only after 5 months of HF + HS diet. However, PVAT did not impact acetylcholine-induced relaxation in SMAs from both sexes fed HF diet. The findings suggest that the addition of sucrose to a HF diet accelerates PVAT dysfunction in both sexes. PVAT dysfunction in response to both diets was observed early in females compared to age-matched males suggesting a susceptibility of the female sex to PVAT-mediated vascular complications in the setting of obesity. The data illustrate the importance of the duration and composition of obesogenic diets for investigating sex-specific treatments and pharmacological targets for obesity-induced vascular complications.


2020 ◽  
Author(s):  
Isabel Casimiro ◽  
Natalie D. Stull ◽  
Sarah A. Tersey ◽  
Raghavendra Mirmira

Abstract Background:Obesity and the metabolic syndrome are increasingly prevalent in society and their complications and response to treatment exhibit sexual dimorphism. Mouse models of high fat diet-induced obesity are commonly used for both mechanistic and therapeutic studies of metabolic disease and diabetes. However, the inclusion of female mammals in obesity research has not been a common practice, and has resulted in a paucity of data regarding the effect of sex on metabolic parameters and its applicability to humans. Methods:Here we analyzed male and female C57BL/6J mice beginning at 4 weeks of age that were placed on a low-fat diet (LFD, 10% calories from fat), a Western Diet (WD, 45% calories from fat), or a high fat diet (HFD, 60% calories from fat). Assessments of body composition, glucose homeostasis, insulin production, and energy metabolism, as well as histological analyses of pancreata were performed. Results:Both male and female C57BL/6J mice had similar increases in total percent body weight gain with both WD and HFD compared to LFD, however, male mice gained weight earlier upon HFD or WD feeding compared to female mice. Male mice exhibited a decrease in both food consumption and activity with either WD or HFD compared to LFD, whereas female mice did not exhibit any differences in food intake and minimal changes in locomotor activity on any diet. Glucose tolerance tests performed at 4, 12 and 20 weeks of dietary intervention revealed impaired glucose tolerance that was worse in male mice compared to females. Furthermore, male mice exhibited an increase in pancreatic β cell area as well as reduced insulin sensitivity after HFD feeding compared to WD or LFD, whereas female mice did not. Conclusions:Male and female C57BL/6J mice exhibited strikingly different responses in weight, food consumption, locomotor activity, and β cell adaptation upon dietary manipulation, with the latter exhibiting less striking phenotypic changes. We conclude that the nature of these responses emphasizes the need to contextualize studies of obesity pathophysiology and treatment with respect to sex.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Eric J Belin de Chantemele

Recent studies by our group demonstrated that leptin is a direct regulator of aldosterone secretion and increases blood pressure via sex-specific mechanisms involving leptin-mediated activation of the aldosterone-mineralocorticoid receptor signaling pathway in females and sympatho-activation in males. Although it is well accepted that females secrete more leptin and aldosterone than males, it is unknown whether leptin infusion raises blood pressure similarly in male and female mice and whether higher aldosterone levels sensitize females to salt-induced hypertension. We hypothesized that female mice would be more sensitive to leptin than males and also have a potentiated blood pressure rise in response to high salt diet compared to males. Male and female Balb/C mice were implanted with radiotelemeters for continuous measurement of mean arterial pressure (MAP) at 10 weeks of age. MAP was measured for seven days prior to feeding with a high-salt diet (HS, 4%NaCl) for seven days. Following a recovery period, animals were then implanted with osmotic minipumps containing leptin (0.9mg/kg/day) recorded for seven days. Baseline MAP was similar between males and females (101.3±2.9 vs 99.3±3.7 mmHg, n=4 and 5, respectively), however, HS diet resulted in a greater MAP increase in females (15.0±2.6 mmHg) compared to males (3.1±4.5 mmHg, P<0.05). MAP with leptin treatment was increased with leptin in females moreso than in males, however, this did not reach significance (6.8±5.8 vs 1.8±5.9 mmHg, respectively). This potential sex difference in blood pressure responses to leptin was not associated with changes in body weight (0.07±0.44 vs -0.22±0.2 g, respectively) nor changes in blood glucose (-19.67±15.06 vs -15.4±11.4 mg/dl, respectively) in males and females in response to leptin. In summary, female mice are more sensitive to HS diet-induced blood pressure increases than males. Females may be more sensitive to leptin-mediated blood pressure increases than males. Further investigation is needed to determine whether these sex differences in blood pressure responses to HS diet and leptin are mediated by aldosterone or other mechanisms.


2018 ◽  
Vol 75 (6) ◽  
pp. 1042-1049
Author(s):  
Seongjoon Park ◽  
Erkhembayar Nayantai ◽  
Toshimitsu Komatsu ◽  
Hiroko Hayashi ◽  
Ryoichi Mori ◽  
...  

Abstract The orexigenic hormone neuropeptide Y (NPY) plays a pivotal role in the peripheral regulation of fat metabolism. However, the mechanisms underlying the effects of sex on NPY function have not been extensively analyzed. In this study, we examined the effects of NPY deficiency on fat metabolism in male and female mice. Body weight was slightly decreased, whereas white adipose tissue (WAT) mass was significantly decreased as the thermogenic program was upregulated in NPY-/- female mice compared with that in wild-type mice; these factors were not altered in response to NPY deficiency in male mice. Moreover, lack of NPY resulted in an increase in luteinizing hormone (LH) expression in the pituitary gland, with concomitant activation of the estradiol-mediated thermogenic program in inguinal WAT, and alleviated age-related modification of adiposity in female mice. Taken together, these data revealed a novel intracellular mechanism of NPY in the regulation of fat metabolism and highlighted the sexual dimorphism of NPY as a promising target for drug development to reduce postmenopausal adiposity.


2006 ◽  
Vol 189 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Yongmei Wang ◽  
Takeshi Sakata ◽  
Hashem Z Elalieh ◽  
Scott J Munson ◽  
Andrew Burghardt ◽  
...  

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 μg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 μg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor κB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.


Sign in / Sign up

Export Citation Format

Share Document