scholarly journals UBE2G1 Governs the Destruction of Cereblon Neomorphic Substrates

2018 ◽  
Author(s):  
Gang Lu ◽  
Stephanie Weng ◽  
Mary Matyskiela ◽  
Xinde Zheng ◽  
Wei Fang ◽  
...  

AbstractThe immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide as well as the novel cereblon modulating agents (CMs) including CC-122, CC-220 and cereblon-based proteolysis-targeting chimaeras (PROTACs) repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with an E1 ubiquitin-activating enzyme and E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the polyubiquitination of CRL4CRBN neomorphic substrates in a cereblon- and CM-dependent manner via a sequential ubiquitination mechanism: UBE2D3 transforms the neomorphic substrates into mono-ubiquitinated forms, upon which UBE2G1 catalyzes K48-linked polyubiquitin chain extension. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, these findings suggest that loss of UBE2G1 activity might be a resistance mechanism to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins, and that this resistance mechanism can be overcome by next-generation CMs that destroy the same targeted protein more effectively.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gang Lu ◽  
Stephanie Weng ◽  
Mary Matyskiela ◽  
Xinde Zheng ◽  
Wei Fang ◽  
...  

The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC-220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins.


2007 ◽  
Vol 27 (13) ◽  
pp. 4708-4719 ◽  
Author(s):  
Elah Pick ◽  
On-Sun Lau ◽  
Tomohiko Tsuge ◽  
Suchithra Menon ◽  
Yingchun Tong ◽  
...  

ABSTRACT DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63610 ◽  
Author(s):  
William W. Lockwood ◽  
Sahiba K. Chandel ◽  
Greg L. Stewart ◽  
Hediye Erdjument-Bromage ◽  
Levi J. Beverly

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gergely Rona ◽  
Domenico Roberti ◽  
Yandong Yin ◽  
Julia K Pagan ◽  
Harrison Homer ◽  
...  

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.


2020 ◽  
Vol 6 (38) ◽  
pp. eabc8561 ◽  
Author(s):  
Jun Ren ◽  
Mingming Sun ◽  
Hao Zhou ◽  
Amir Ajoolabady ◽  
Yuan Zhou ◽  
...  

Defective mitophagy is causally linked to obesity complications. Here, we identified an interaction between mitophagy protein FUNDC1 (FUN14 domain containing 1) and receptor subunit of human SCF (SKP1/cullin/F-box protein) ubiquitin ligase complex FBXL2 as a gatekeeper for mitochondrial Ca2+ homeostasis through degradation of IP3R3 (inositol 1,4,5-trisphosphate receptor type 3). Loss of FUNDC1 in FUNDC1−/− mice accentuated high-fat diet–induced cardiac remodeling, functional and mitochondrial anomalies, cell death, rise in IP3R3, and Ca2+ overload. Mass spectrometry and co-immunoprecipitation analyses revealed an interaction between FUNDC1 and FBXL2. Truncated mutants of Fbox (Delta-F-box) disengaged FBXL2 interaction with FUNDC1. Activation or transfection of FBXL2, inhibition of IP3R3 alleviated, whereas disruption of FBXL2 localization sensitized lipotoxicity-induced cardiac damage. FUNDC1 deficiency accelerated and decelerated palmitic acid–induced degradation of FBXL2 and IP3R3, respectively. Our data suggest an essential role for interaction between FUNDC1 and FBXL2 in preserving mitochondrial Ca2+ homeostasis and cardiac function in obese hearts.


2003 ◽  
Vol 23 (15) ◽  
pp. 5165-5173 ◽  
Author(s):  
Judit Garriga ◽  
Sabyasachi Bhattacharya ◽  
Joaquim Calbó ◽  
Renée M. Marshall ◽  
May Truongcao ◽  
...  

ABSTRACT CDK9 is a CDC2-related kinase and the catalytic subunit of the positive-transcription elongation factor b and the Tat-activating kinase. It has recently been reported that CDK9 is a short-lived protein whose levels are regulated during the cell cycle by the SCFSKP2 ubiquitin ligase complex (R. E. Kiernan et al., Mol. Cell. Biol. 21:7956-7970, 2001). The results presented here are in contrast to those observations. CDK9 protein levels remained unchanged in human cells entering and progressing through the cell cycle from G0, despite dramatic changes in SKP2 expression. CDK9 levels also remained unchanged in cells exiting from mitosis and progressing through the next cell cycle. Similarly, the levels of CDK9 protein did not change as cells exited the cell cycle and differentiated along various lineages. In keeping with these observations, the kinase activity associated with CDK9 was found to not be regulated during the cell cycle. We have also found that endogenous CDK9 is a very stable protein with a half-life (t 1/2) of 4 to 7 h, depending on the cell type. In contrast, when CDK9 is overexpressed, it is not stabilized and is rapidly degraded, with a t 1/2 of less than 1 h, depending on the level of expression. Treatment of cells with proteasome inhibitors blocked the degradation of short-lived proteins, such as p27, but did not affect the expression of endogenous CDK9. Ectopic overexpression of SKP2 led to reduction of p27 protein levels but had no effect on the expression of endogenous CDK9. Finally, downregulation of endogenous SKP2 gene expression by interfering RNA had no effect on CDK9 protein levels, whereas p27 protein levels increased dramatically. Therefore, the SCFSKP2 ubiquitin ligase does not regulate CDK9 expression in a cell cycle-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document