scholarly journals Mechanistic and experimental models of cell migration reveal the importance of intercellular interactions in cell invasion

2018 ◽  
Author(s):  
Oleksii M. Matsiaka ◽  
Ruth E. Baker ◽  
Esha T. Shah ◽  
Matthew J. Simpson

AbstractMoving fronts of cells are essential for development, repair and disease progression. Therefore, understanding and quantifying the details of the mechanisms that drive the movement of cell fronts is of wide interest. Quantitatively identifying the role of intercellular interactions, and in particular the role of cell pushing, remains an open question. Indeed, perhaps the most common continuum mathematical idealization of moving cell fronts is to treat the population of cells, either implicitly or explicitly, as a population of point particles undergoing a random walk that neglects intercellular interactions. In this work, we report a combined experimental-modelling approach showing that intercellular interactions contribute significantly to the spatial spreading of a population of cells. We use a novel experimental data set with PC-3 prostate cancer cells that have been pretreated with Mitomycin-C to suppress proliferation. This allows us to experimentally separate the effects of cell migration from cell proliferation, thereby enabling us to focus on the migration process in detail as the population of cells recolonizes an initially-vacant region in a series of two-dimensional experiments. We quantitatively model the experiments using a stochastic modelling framework, based on Langevin dynamics, which explicitly incorporates random motility and various intercellular forces including: (i) long range attraction (adhesion); and (ii) finite size effects that drive short range repulsion (pushing). Quantitatively comparing the ability of this model to describe the experimentally observed population-level behaviour provides us with quantitative insight into the roles of random motility and intercellular interactions. To quantify the mechanisms at play, we calibrate the stochastic model to match experimental cell density profiles to obtain estimates of cell diffusivity, D, and the amplitude of intercellular forces, f0. Our analysis shows that taking a standard modelling approach which ignores intercellular forces provides a poor match to the experimental data whereas incorporating intercellular forces, including short-range pushing and longer range attraction, leads to a faithful representation of the experimental observations. These results demonstrate a significant role for intercellular interactions in cell invasion.Author summaryMoving cell fronts are routinely observed in various physiological processes, such as wound healing, malignant invasion and embryonic morphogenesis. We explore the effects of a previously overlooked mechanism that contributes to population-level front movement: pushing. Our framework is flexible and incorporates range of reasonable biological phenomena, such as random motility, cell-to-cell adhesion, and pushing. We find that neglecting finite size effects and intercellular forces, such as cell pushing, reduces our ability to mimic and predict our experimental observations.

Nanoscale ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 4921-4926 ◽  
Author(s):  
Julien Lam ◽  
James F. Lutsko

Freezing a nanodroplet deposited on a solid substrate leads to the formation of crystalline structures. We study the inherent mechanisms underlying this general phenomenon by means of molecular dynamics simulations.


2015 ◽  
Vol 110 (6) ◽  
pp. 66001 ◽  
Author(s):  
D. Torres ◽  
M. A. Di Muro ◽  
C. E. La Rocca ◽  
L. A. Braunstein

Author(s):  
Jean Zinn-Justin

A number of numerical calculations, like Monte Carlo or transfer matrix calculations, are performed with systems in which the size in several or all dimensions is finite. To extrapolate the results to the infinite system, it is thus necessary to understand how the infinite size limit is reached. In particular in a system in which the forces are short range, no phase transition can occur in a finite volume, or in a geometry in which the size is infinite only in one dimension. This indicates that the infinite-size extrapolation is somewhat non-trivial. In this chapter, the problem is analysed in the case of second-order phase transitions, in the framework of the N-vector model. The existence of a finite-size scaling is established, extending renormalization group (RG) arguments to this new situation. Then, finite volume geometry and cylindrical geometry, in which the size is finite in all dimensions except one, are distinguished. It is explained how to adapt the methods used in the case of infinite systems to calculate the new universal quantities appearing in finite-size effects, for example, in d = 4−ϵ or d = 2+ϵ dimensions. Special properties of the commonly used periodic boundary conditions are emphasized.


Author(s):  
Bruno Andreotti ◽  
Philippe Claudin

A sediment bed sheared by an unbounded flow is unconditionally unstable towards the growth of bedforms called ripples under water and dunes in the aeolian case. We review here the dynamical mechanisms controlling this linear instability, putting the emphasis on testing models against field and laboratory measurements. We then discuss the role of nonlinearities and the influence of finite size effects, namely the depth of the atmospheric boundary layer in the aeolian case and the water depth in the case of rivers.


Sign in / Sign up

Export Citation Format

Share Document