scholarly journals Zero-preserving imputation of scRNA-seq data using low-rank approximation

2018 ◽  
Author(s):  
George C. Linderman ◽  
Jun Zhao ◽  
Yuval Kluger

ABSTRACTSingle cell RNA-sequencing (scRNA-seq) methods have revolutionized the study of gene expression but are plagued by dropout events, a phenomenon where genes actually expressed in a given cell are incorrectly measured as unexpressed. We present a method based on low-rank approximation which successfully replaces these dropouts (zero expression levels of unobserved expressed genes) by nonzero values, while preserving biologically non-expressed genes (true biological zeros) at zero expression levels. We validate our approach and compare it to two state-of-the-art methods. We show that it recovers true expression of marker genes while preserving biological zeros, increases separation of known cell types and improves correlation of simulated cells to their true profiles. Furthermore, our method is dramatically more scalable, allowing practitioners to quickly and easily recover expression of even the largest scRNA-seq datasets.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyuan Lu ◽  
Jessica C. Mar

Abstract Background It is a long established fact that sex is an important factor that influences the transcriptional regulatory processes of an organism. However, understanding sex-based differences in gene expression has been limited because existing studies typically sequence and analyze bulk tissue from female or male individuals. Such analyses average cell-specific gene expression levels where cell-to-cell variation can easily be concealed. We therefore sought to utilize data generated by the rapidly developing single cell RNA sequencing (scRNA-seq) technology to explore sex dimorphism and its functional consequences at the single cell level. Methods Our study included scRNA-seq data of ten well-defined cell types from the brain and heart of female and male young adult mice in the publicly available tissue atlas dataset, Tabula Muris. We combined standard differential expression analysis with the identification of differential distributions in single cell transcriptomes to test for sex-based gene expression differences in each cell type. The marker genes that had sex-specific inter-cellular changes in gene expression formed the basis for further characterization of the cellular functions that were differentially regulated between the female and male cells. We also inferred activities of transcription factor-driven gene regulatory networks by leveraging knowledge of multidimensional protein-to-genome and protein-to-protein interactions and analyzed pathways that were potential modulators of sex differentiation and dimorphism. Results For each cell type in this study, we identified marker genes with significantly different mean expression levels or inter-cellular distribution characteristics between female and male cells. These marker genes were enriched in pathways that were closely related to the biological functions of each cell type. We also identified sub-cell types that possibly carry out distinct biological functions that displayed discrepancies between female and male cells. Additionally, we found that while genes under differential transcriptional regulation exhibited strong cell type specificity, six core transcription factor families responsible for most sex-dimorphic transcriptional regulation activities were conserved across the cell types, including ASCL2, EGR, GABPA, KLF/SP, RXRα, and ZF. Conclusions We explored novel gene expression-based biomarkers, functional cell group compositions, and transcriptional regulatory networks associated with sex dimorphism with a novel computational pipeline. Our findings indicated that sex dimorphism might be widespread across the transcriptomes of cell types, cell type-specific, and impactful for regulating cellular activities.


2021 ◽  
Author(s):  
Mohammad Lotfollahi ◽  
leander Dony ◽  
Harshita Agarwala ◽  
Fabian J Theis

Learning robust representations can help uncover underlying biological variation in scRNA-seq data. Disentangled representation learning is one approach to obtain such informative as well interpretable representations. Here, we learn disentangled representations of scRNA-seq data using β-variational autoencoder (β-VAE) and apply the model for out-of-distribution (OOD) prediction. We demonstrate accurate gene expression predictions for cell types absent from training in a perturbation and a developmental dataset. We further show that β-VAE outperforms a state-of-the-art disentanglement method for scRNA-seq in OOD prediction while achieving better disentanglement performance.


Author(s):  
Yinlei Hu ◽  
Bin Li ◽  
Falai Chen ◽  
Kun Qu

Abstract Unsupervised clustering is a fundamental step of single-cell RNA sequencing data analysis. This issue has inspired several clustering methods to classify cells in single-cell RNA sequencing data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose a new algorithm for single-cell RNA sequencing data clustering based on Sparse Optimization and low-rank matrix factorization (scSO). We applied our scSO algorithm to analyze multiple benchmark datasets and showed that the cluster number predicted by scSO was close to the number of reference cell types and that most cells were correctly classified. Our scSO algorithm is available at https://github.com/QuKunLab/scSO. Overall, this study demonstrates a potent cell clustering approach that can help researchers distinguish cell types in single-cell RNA sequencing data.


2019 ◽  
Vol 21 (5) ◽  
pp. 1581-1595 ◽  
Author(s):  
Xinlei Zhao ◽  
Shuang Wu ◽  
Nan Fang ◽  
Xiao Sun ◽  
Jue Fan

Abstract Single-cell RNA sequencing (scRNA-seq) has been rapidly developing and widely applied in biological and medical research. Identification of cell types in scRNA-seq data sets is an essential step before in-depth investigations of their functional and pathological roles. However, the conventional workflow based on clustering and marker genes is not scalable for an increasingly large number of scRNA-seq data sets due to complicated procedures and manual annotation. Therefore, a number of tools have been developed recently to predict cell types in new data sets using reference data sets. These methods have not been generally adapted due to a lack of tool benchmarking and user guidance. In this article, we performed a comprehensive and impartial evaluation of nine classification software tools specifically designed for scRNA-seq data sets. Results showed that Seurat based on random forest, SingleR based on correlation analysis and CaSTLe based on XGBoost performed better than others. A simple ensemble voting of all tools can improve the predictive accuracy. Under nonideal situations, such as small-sized and class-imbalanced reference data sets, tools based on cluster-level similarities have superior performance. However, even with the function of assigning ‘unassigned’ labels, it is still challenging to catch novel cell types by solely using any of the single-cell classifiers. This article provides a guideline for researchers to select and apply suitable classification tools in their analysis workflows and sheds some lights on potential direction of future improvement on classification tools.


2018 ◽  
Vol 29 (8) ◽  
pp. 2060-2068 ◽  
Author(s):  
Nikos Karaiskos ◽  
Mahdieh Rahmatollahi ◽  
Anastasiya Boltengagen ◽  
Haiyue Liu ◽  
Martin Hoehne ◽  
...  

Background Three different cell types constitute the glomerular filter: mesangial cells, endothelial cells, and podocytes. However, to what extent cellular heterogeneity exists within healthy glomerular cell populations remains unknown.Methods We used nanodroplet-based highly parallel transcriptional profiling to characterize the cellular content of purified wild-type mouse glomeruli.Results Unsupervised clustering of nearly 13,000 single-cell transcriptomes identified the three known glomerular cell types. We provide a comprehensive online atlas of gene expression in glomerular cells that can be queried and visualized using an interactive and freely available database. Novel marker genes for all glomerular cell types were identified and supported by immunohistochemistry images obtained from the Human Protein Atlas. Subclustering of endothelial cells revealed a subset of endothelium that expressed marker genes related to endothelial proliferation. By comparison, the podocyte population appeared more homogeneous but contained three smaller, previously unknown subpopulations.Conclusions Our study comprehensively characterized gene expression in individual glomerular cells and sets the stage for the dissection of glomerular function at the single-cell level in health and disease.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1306 ◽  
Author(s):  
Clarence K. Mah ◽  
Alexander T. Wenzel ◽  
Edwin F. Juarez ◽  
Thorin Tabor ◽  
Michael M. Reich ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types.


2019 ◽  
Author(s):  
Umang Varma ◽  
Justin Colacino ◽  
Anna Gilbert

AbstractSingle cell RNA-sequencing (scRNA-seq) technologies have generated an expansive amount of new biological information, revealing new cellular populations and hierarchical relationships. A number of technologies complementary to scRNA-seq rely on the selection of a smaller number of marker genes (or features) to accurately differentiate cell types within a complex mixture of cells. In this paper, we benchmark differential expression methods against information-theoretic feature selection methods to evaluate the ability of these algorithms to identify small and efficient sets of genes that are informative about cell types. Unlike differential methods, that are strictly binary and univariate, information-theoretic methods can be used as any combination of binary or multiclass and univariate or multivariate. We show for some datasets, information theoretic methods can reveal genes that are both distinct from those selected by traditional algorithms and that are as informative, if not more, of the class labels. We also present detailed and principled theoretical analyses of these algorithms. All information theoretic methods in this paper are implemented in our PicturedRocks Python package that is compatible with the widely used scanpy package.


2016 ◽  
Author(s):  
Valentine Svensson ◽  
Kedar Nath Natarajan ◽  
Lam-Ha Ly ◽  
Ricardo J Miragaia ◽  
Charlotte Labalette ◽  
...  

AbstractHigh-throughput single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, and has revealed new cell types, and new insights into developmental process and stochasticity in gene expression. There are now several published scRNA-seq protocols, which all sequence transcriptomes from a minute amount of starting material. Therefore, a key question is how these methods compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of gene expression. Here, we assessed the sensitivity and accuracy of many published data sets based on standardized spike-ins with a uniform raw data processing pipeline. We developed a flexible and fast UMI counting tool (https://github.com/vals/umis) which is compatible with all UMI based protocols. This allowed us to relate these parameters to sequencing depth, and discuss the trade offs between the different methods. To confirm our results, we performed experiments on cells from the same population using three different protocols. We also investigated the effect of RNA degradation on spike-in molecules, and the average efficiency of scRNA-seq on spike-in molecules versus endogenous RNAs.


Author(s):  
Di He ◽  
Di Wang ◽  
Ping Lu ◽  
Nan Yang ◽  
Zhigang Xue ◽  
...  

Abstract Lung adenocarcinoma (LUAD) harboring EGFR mutations prevails in Asian population. However, the inter-patient and intra-tumor heterogeneity has not been addressed at single-cell resolution. Here we performed single-cell RNA sequencing (scRNA-seq) of total 125,674 cells from seven stage-I/II LUAD samples harboring EGFR mutations and five tumor-adjacent lung tissues. We identified diverse cell types within the tumor microenvironment (TME) in which myeloid cells and T cells were the most abundant stromal cell types in tumors and adjacent lung tissues. Within tumors, accompanied by an increase in CD1C+ dendritic cells, the tumor-associated macrophages (TAMs) showed pro-tumoral functions without signature gene expression of defined M1 or M2 polarization. Tumor-infiltrating T cells mainly displayed exhausted and regulatory T-cell features. The adenocarcinoma cells can be categorized into different subtypes based on their gene expression signatures in distinct pathways such as hypoxia, glycolysis, cell metabolism, translation initiation, cell cycle, and antigen presentation. By performing pseudotime trajectory, we found that ELF3 was among the most upregulated genes in more advanced tumor cells. In response to secretion of inflammatory cytokines (e.g., IL1B) from immune infiltrates, ELF3 in tumor cells was upregulated to trigger the activation of PI3K/Akt/NF-κB pathway and elevated expression of proliferation and anti-apoptosis genes such as BCL2L1 and CCND1. Taken together, our study revealed substantial heterogeneity within early-stage LUAD harboring EGFR mutations, implicating complex interactions among tumor cells, stromal cells and immune infiltrates in the TME.


Author(s):  
Jin Chen ◽  
Defu Lian ◽  
Kai Zheng

One-class collaborative filtering (OCCF) problems are vital in many applications of recommender systems, such as news and music recommendation, but suffers from sparsity issues and lacks negative examples. To address this problem, the state-of-the-arts assigned smaller weights to unobserved samples and performed low-rank approximation. However, the ground-truth ratings of unobserved samples are usually set to zero but ill-defined. In this paper, we propose a ranking-based implicit regularizer and provide a new general framework for OCCF, to avert the ground-truth ratings of unobserved samples. We then exploit it to regularize a ranking-based loss function and design efficient optimization algorithms to learn model parameters. Finally, we evaluate them on three realworld datasets. The results show that the proposed regularizer significantly improves ranking-based algorithms and that the proposed framework outperforms the state-of-the-art OCCF algorithms.


Sign in / Sign up

Export Citation Format

Share Document