scholarly journals Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador

2018 ◽  
Author(s):  
Sadie J. Ryan ◽  
Stephanie J. Mundis ◽  
Alex Aguirre ◽  
Catherine A. Lippi ◽  
Efraín Beltrán ◽  
...  

AbstractInsecticide resistance (IR) can undermine efforts to control vectors of public health importance. Aedes aegypti is the main vector of resurging diseases in the Americas such as yellow fever and dengue, and recently emerging chikungunya and Zika fever, which have caused unprecedented epidemics in the region. Vector control remains the primary intervention to prevent outbreaks of Aedes-transmitted diseases. In many high-risk regions, like southern Ecuador, we have limited information on IR. In this study, Ae. aegypti IR was measured across four cities in southern Ecuador using phenotypic assays and genetic screening for alleles associated with pyrethroid IR. Bottle bioassays showed significant inter-seasonal variation in resistance to deltamethrin, a pyrethroid commonly used by the Ministry of Health, and alpha-cypermethrin, as well as between-city differences in deltamethrin resistance. There was also a significant difference in phenotypic response to the organophosphate, Malathion, between two cities during the second sampling season. Frequencies of the resistant V1016I genotype ranged from 0.13 to 0.68. Frequencies of the resistant F1534C genotype ranged from 0.63 to 1.0, with sampled populations in Machala and Huaquillas at fixation for the resistant genotype in all sampled seasons. In Machala and Portovelo, there were statistically significant inter-seasonal variation in genotype frequencies for V1016I. Resistance levels were highest in Machala, a city with hyperendemic dengue transmission and historically intense insecticide use. Despite evidence that resistance alleles conferred phenotypic resistance to pyrethroids, there was not a precise correspondence between these indicators. For the F1534C gene, 17.6% of homozygous mutant mosquitoes and 70.8% of heterozygotes were susceptible, while for the V1016I gene, 45.6% homozygous mutants and 55.6% of heterozygotes were susceptible. This study shows spatiotemporal variability in IR in Ae. aegypti populations in southern coastal Ecuador, and provides an initial examination of IR in this region, helping to guide vector control efforts for Ae. aegypti.Author SummaryMosquito control is the primary method of managing the spread of many diseases transmitted by the yellow fever mosquito (Aedes aegypti). Throughout much of Latin America the transmission of diseases like dengue fever and Zika fever pose a serious risk to public health. The rise of insecticide resistance (IR) is a major threat to established vector control programs, which may fail if commonly used insecticides are rendered ineffective. Public health authorities in southern coastal Ecuador, a high-risk region for diseases vectored by Ae. aegypti, previously had limited information on the status of IR in local populations of mosquitoes. Here, we present the first assessment of IR in adult Ae. aegypti to insecticides (deltamethrin, Malathion, and alphacypermethrin) routinely used in public health vector control in four cities along Ecuador’s southern coast. Observed patterns of IR differed between cities and seasons of mosquito sampling, suggesting that IR status may fluctuate in space and time. The highest overall resistance was detected in Machala, a city with hyperendemic dengue transmission and a long history of intense insecticide use. Monitoring for IR is an integral component of vector control services, where alternative management strategies are deployed when IR is detected.

2021 ◽  
Vol 15 (5) ◽  
pp. e0009393
Author(s):  
Ndeye Marie Sene ◽  
Konstantinos Mavridis ◽  
El Hadji Ndiaye ◽  
Cheikh Tidiane Diagne ◽  
Alioune Gaye ◽  
...  

Aedes aegypti is the main epidemic vector of arboviruses in Africa. In Senegal, control activities are mainly limited to mitigation of epidemics, with limited information available for Ae. aegypti populations. A better understanding of the current Ae. aegypti susceptibility status to various insecticides and relevant resistance mechanisms involved is needed for the implementation of effective vector control strategies. The present study focuses on the detection of insecticide resistance and reveals the related mechanisms in Ae. aegypti populations from Senegal. Bioassays were performed on Ae. aegypti adults from nine Senegalese localities (Matam, Louga, Barkedji, Ziguinchor, Mbour, Fatick, Dakar, Kédougou and Touba). Mosquitoes were exposed to four classes of insecticides using the standard WHO protocols. Resistance mechanisms were investigated by genotyping for pyrethroid target site resistance mutations (V1016G, V1016I, F1534C and S989P) and measuring gene expression levels of key detoxification genes (CYP6BB2, CYP9J26, CYP9J28, CYP9J32, CYP9M6, CCEae3a and GSTD4). All collected populations were resistant to DDT and carbamates except for the ones in Matam (Northern region). Resistance to permethrin was uniformly detected in mosquitoes from all areas. Except for Barkédji and Touba, all populations were characterized by a susceptibility to 0.75% Permethrin. Susceptibility to type II pyrethroids was detected only in the Southern regions (Kédougou and Ziguinchor). All mosquito populations were susceptible to 5% Malathion, but only Kédougou and Matam mosquitoes were susceptible to 0.8% Malathion. All populations were resistant to 0.05% Pirimiphos-methyl, whereas those from Louga, Mbour and Barkédji, also exhibited resistance to 1% Fenitrothion. None of the known target site pyrethroid resistance mutations was present in the mosquito samples included in the genotyping analysis (performed in > 1500 samples). In contrast, a remarkably high (20-70-fold) overexpression of major detoxification genes wasobserved, suggesting that insecticide resistance is mostly mediated through metabolic mechanisms. These data provide important evidence to support dengue vector control in Senegal.


2019 ◽  
Vol 57 (3) ◽  
pp. 830-836
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Juan C Lol ◽  
Carmen Castillo ◽  
Francisco Lopez ◽  
...  

Abstract Aedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The primary strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations presents a significant threat to these prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti is vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel (VGSC) gene for the presence of the V1016I and F1534C kdr mutations in Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. A strong association between these mutations and permethrin and deltamethrin resistance was found in Puntarenas. Limon did not show this association; however, our results indicate that the Limon population analyzed is not under the same selective pressure as Puntarenas for the VGSC gene. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti, which must be a priority to develop an effective resistance management plan.


2019 ◽  
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Carmen Castillo ◽  
Juan C Lol ◽  
Francisco Lopez ◽  
...  

AbstractAedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The main strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations present a big threat for the prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti are vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel gene for the presence of the V1016I and F1534C kdr mutations in pyrethroid-resistant Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti which must be a priority to develop an effective resistance management plan.


2020 ◽  
Author(s):  
Yuri Lima ◽  
Wallace Pinheiro ◽  
Carlos Eduardo Barbosa ◽  
Matheus Magalhães ◽  
Miriam Chaves ◽  
...  

UNSTRUCTURED Aedes aegypti is a vector for the transmission of diseases such as dengue fever, chikungunya, Zika fever, and yellow fever. In 2016, over one million cases of these diseases were reported in Brazil — an alarming public health issue. One of the ways of controlling the disease is by inspecting and neutralizing the places where the Aedes aegypti lays its eggs through the repository of data obtained from the Ministry of Planning, Development, and Administration. In this work, we propose a multi-criteria analysis to create an index for the inspections reported through the system. We applied part of the proposed analysis to a database of inspections in government buildings to test our proposition via the generation of a heat map, which let us draw some conclusions and propose future studies.


2020 ◽  
Vol 8 (15) ◽  
pp. 23-28
Author(s):  
Amparo Gabriela Hernández Ramos

Dengue is an infectious disease with high rates of morbidity and mortality, transmitted by the bite of the female mosquito of the genus Aedes aegypti, vector distributed in tropical and subtropical areas throughout the world. America is one of the most affected regions. This vector is controlled through insecticides that due to its constant use in populations, a resistance phenomenon has been produced. The objective of this review is to identify the situation of insecticide resistance in populations of Aedes aegypti in Latin American countries. In this region, several insecticides have been used for vector control; in the last 10 years insecticides of the pyrethroid and organophosphorus group have been used as adulticides for the control of the mosquito, conditioning resistance. Some insecticides such as organophosphates and deltamethrin, despite of not being intensively used in Latin American countries, also show resistance. Improvements in vector control are required, including the rotation of the insecticides during the different seasons, as well as innovating techniques and forms of vector control


2021 ◽  
Vol 15 (3) ◽  
pp. e0009205
Author(s):  
Rosilawati Rasli ◽  
Yoon Ling Cheong ◽  
M. Khairuddin Che Ibrahim ◽  
Siti Futri Farahininajua Fikri ◽  
Rusydi Najmuddin Norzali ◽  
...  

Background In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. Method and results The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. Conclusion The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.


2019 ◽  
Vol 13 (4) ◽  
pp. e0007322 ◽  
Author(s):  
Catherine A. Lippi ◽  
Anna M. Stewart-Ibarra ◽  
M. E. Franklin Bajaña Loor ◽  
Jose E. Dueñas Zambrano ◽  
Nelson A. Espinoza Lopez ◽  
...  

2011 ◽  
Vol 106 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Isabelle Dusfour ◽  
Véronique Thalmensy ◽  
Pascal Gaborit ◽  
Jean Issaly ◽  
Romuald Carinci ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Joël Gustave ◽  
Florence Fouque ◽  
Sylvie Cassadou ◽  
Lucie Leon ◽  
Gabriel Anicet ◽  
...  

During the past ten years, the islands of Guadeloupe (French West Indies) are facing dengue epidemics with increasing numbers of cases and fatal occurrences. The vectorAedes aegyptiis submitted to intensive control, with little effect on mosquito populations. The hypothesis that importantAe. aegyptibreeding sites are not controlled is investigated herein. For that purpose, the roof gutters of 123 houses were systematically investigated, and the percentage of gutters positive forAe. aegyptivaried from 17.2% to 37.5%, from humid to dry locations. In the dryer location, most of houses had no other breeding sites. The results show that roof gutters are becoming the most importantAe. aegyptibreeding sites in some locations in Guadeloupe, with consequences on dengue transmission and vector control.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Regan Deming ◽  
Pablo Manrique-Saide ◽  
Anuar Medina Barreiro ◽  
Edgar Ulises Koyoc Cardeña ◽  
Azael Che-Mendoza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document