scholarly journals The sequence dependent search mechanism of EcoRI

2018 ◽  
Author(s):  
S.C. Piatt ◽  
J.J. Loparo ◽  
A.C. Price

ABSTRACTOne-dimensional search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of one-dimensional diffusion can help resolve the competing demands of fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of one-dimensional search by QD labeled EcoRI. Our data supports the view that proteins search DNA via rotation coupled sliding over a corrugated energy landscape. We observed that while EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence independent energy landscape during fast search, but rapidly interconverts with a “hemi-specific” binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding which can then lead to target recognition.

2016 ◽  
Vol 473 (19) ◽  
pp. 3321-3339 ◽  
Author(s):  
Kazuhiko Yamasaki ◽  
Tomoko Yamasaki

Transcription factor SATB1 (special AT-rich sequence binding protein 1) contains multiple DNA-binding domains (DBDs), i.e. two CUT-domain repeats (CUTr1 and CUTr2 from the N-terminus) and a homeodomain, and binds to the matrix attachment region (MAR) of DNA. Although CUTr1 and the homeodomain, but not CUTr2, are known to contribute to DNA binding, different research groups have not reached a consensus on which DBD is responsible for recognition of the target sequence in MAR, 5′-TAATA-3′. Here, we used isothermal titration calorimetry to demonstrate that CUTr1 has binding specificity to this motif, whereas the homeodomain shows affinity for a variety of DNAs without specificity. In line with nonspecific DNA-binding properties of the homeodomain, a mutation of the invariant Asn at position 51 of the homeodomain (typically in contact with the A base in a sequence-specific binding mode) did not affect the binding affinity significantly. The NMR analyses and computational modeling of the homeodomain, however, revealed the tertiary structure and DNA-binding mode that are typical of homeodomains capable of sequence-specific binding. We believe that the lack of highly conserved basic residues in the helix relevant to the base recognition loosens its fitting into the DNA groove and impairs the specific binding. The two DBDs, when fused in tandem, showed strong binding to DNA containing the 5′-TAATA-3′ motif with an affinity constant >108 M−1 and retained nonspecific binding activity. The combination of the sequence-specific and nonspecific DNA-binding modes of SATB1 should be advantageous in a search for target loci during transcriptional regulation.


2014 ◽  
Vol 70 (7) ◽  
pp. 2032-2041 ◽  
Author(s):  
Milosz Ruszkowski ◽  
Joanna Sliwiak ◽  
Agnieszka Ciesielska ◽  
Jakub Barciszewski ◽  
Michal Sikorski ◽  
...  

Pathogenesis-related proteins of class 10 (PR-10) are a family of plant proteins with the same fold characterized by a large hydrophobic cavity that allows them to bind various ligands, such as phytohormones. A subfamily with only ∼20% sequence identity but with a conserved canonical PR-10 fold have previously been recognized as Cytokinin-Specific Binding Proteins (CSBPs), although structurally the binding mode oftrans-zeatin (a cytokinin phytohormone) was found to be quite diversified. Here, it is shown that two CSBP orthologues fromMedicago truncatulaandVigna radiatabind gibberellic acid (GA3), which is an entirely different phytohormone, in a conserved and highly specific manner. In both cases a single GA3 molecule is found in the internal cavity of the protein. The structural data derived from high-resolution crystal structures are corroborated by isothermal titration calorimetry (ITC), which reveals a much stronger interaction with GA3 than withtrans-zeatin and pH dependence of the binding profile. As a conclusion, it is postulated that the CSBP subfamily of plant PR-10 proteins should be more properly linked with general phytohormone-binding properties and termed phytohormone-binding proteins (PhBP).


2020 ◽  
Vol 16 (6) ◽  
pp. 761-773
Author(s):  
Huda K. Mahmoud ◽  
Hanadi A. Katouah ◽  
Marwa F. Harras ◽  
Thoraya A. Farghaly

Background: One of the most successful reagents used in the synthesis of the reactive enaminone is DMF-DMA, but it is very expensive with harmful effects on the human health and reacts with special compounds to generate the enaminone such as active methylene centers. Aim: In this article, we synthesized a new ketenaminal by simple method with inexpensive reagents (through desulfurization in diphenylether). Methods: Thus, a novel reactive ketenaminal (enaminone) was synthesized from the desulfurization of 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-5,7-bis(4-methoxyphenyl)pyrido[2,3-d]pyrimidin- 4(3H)-one with diphenylether. The starting keteneaminal was coupled with diazotized anilines via the known coupling conditions to give a new series of 2-(4-chlorophenyl)-1-(2-(arylhydrazono)-2- oxoethyl)-5,7-bis(4-methoxy-phenyl)pyrido[2,3-d]pyrimidin-4(1H)-ones. Results: The structures of the new compounds were elucidated based on their IR, 1H-NMR, 13CNMR, and Mass spectra. Moreover, the potency of these compounds as antimicrobial agents has been evaluated. The results showed that some of the products have high activity nearly equal to that of the used standard antibiotic. Additionally, the docking study was done to get the binding mode of the synthesized compounds with the binding site of the DHFR enzyme. The results of molecular docking of the synthesized arylhydrazono compounds are able to fit in DHFR binding site with binding energies ranging from -4.989 to -8.178 Kcal/mol. Conclusion: Our goal was achieved in this context by the synthesis of new ketenaminal from inexpensive reagents, which was utilized in the preparation of bioactive arylhydrazone derivatives.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


2021 ◽  
Vol 22 (15) ◽  
pp. 7848
Author(s):  
Annamaria Zannoni ◽  
Simone Pelliciari ◽  
Francesco Musiani ◽  
Federica Chiappori ◽  
Davide Roncarati ◽  
...  

HP1043 is an essential orphan response regulator of Helicobacter pylori orchestrating multiple crucial cellular processes. Classified as a member of the OmpR/PhoB family of two-component systems, HP1043 exhibits a highly degenerate receiver domain and evolved to function independently of phosphorylation. Here, we investigated the HP1043 binding mode to a target sequence in the hp1227 promoter (Php1227). Scanning mutagenesis of HP1043 DNA-binding domain and consensus sequence led to the identification of residues relevant for the interaction of the protein with a target DNA. These determinants were used as restraints to guide a data-driven protein-DNA docking. Results suggested that, differently from most other response regulators of the same family, HP1043 binds in a head-to-head conformation to the Php1227 target promoter. HP1043 interacts with DNA largely through charged residues and contacts with both major and minor grooves of the DNA are required for a stable binding. Computational alanine scanning on molecular dynamics trajectory was performed to corroborate our findings. Additionally, in vitro transcription assays confirmed that HP1043 positively stimulates the activity of RNA polymerase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuesong Wang ◽  
Willem Jespers ◽  
Rubén Prieto-Díaz ◽  
Maria Majellaro ◽  
Adriaan P. IJzerman ◽  
...  

AbstractThe four adenosine receptors (ARs) A1AR, A2AAR, A2BAR, and A3AR are G protein-coupled receptors (GPCRs) for which an exceptional amount of experimental and structural data is available. Still, limited success has been achieved in getting new chemical modulators on the market. As such, there is a clear interest in the design of novel selective chemical entities for this family of receptors. In this work, we investigate the selective recognition of ISAM-140, a recently reported A2BAR reference antagonist. A combination of semipreparative chiral HPLC, circular dichroism and X-ray crystallography was used to separate and unequivocally assign the configuration of each enantiomer. Subsequently affinity evaluation for both A2A and A2B receptors demonstrate the stereospecific and selective recognition of (S)-ISAM140 to the A2BAR. The molecular modeling suggested that the structural determinants of this selectivity profile would be residue V2506.51 in A2BAR, which is a leucine in all other ARs including the closely related A2AAR. This was herein confirmed by radioligand binding assays and rigorous free energy perturbation (FEP) calculations performed on the L249V6.51 mutant A2AAR receptor. Taken together, this study provides further insights in the binding mode of these A2BAR antagonists, paving the way for future ligand optimization.


2017 ◽  
Vol 95 (2) ◽  
Author(s):  
Lucas Varela ◽  
Gabriel Téllez ◽  
Emmanuel Trizac

2015 ◽  
Vol 112 (44) ◽  
pp. 13467-13472 ◽  
Author(s):  
Danya J. Martell ◽  
Chandra P. Joshi ◽  
Ahmed Gaballa ◽  
Ace George Santiago ◽  
Tai-Yen Chen ◽  
...  

Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ70-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator−DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)—a Cu+-responsive MerR-family metalloregulator—modulates RNAP interactions with CueR’s cognate suboptimal promoter PcopA, and how RNAP affects CueR−PcopAinteractions. We find that RNAP can form two noninterconverting complexes at PcopAin the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a “biased sampling” instead of “dynamic equilibrium shifting” mechanism in regulating transcription initiation; it modulates RNAP’s binding–unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopAinto its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.


slowly growing natural populations. Various approaches have been adopted in order to improve the sensitivity. These have included the use of multiple probes labelled with a single fluor (Lee et al. 1993); or labelled with multiple fluors (Trebesius et al. 1994) and enzyme-linked probes or detection systems that allow signal amplification (Lebaron et al. 1997, Schonhuber et al. 1999). The latter indirect approach not only has the potential for signal amplification, but may also be used in natural samples showing high levels of autofluorescence. Any thorough identification method has to include positive and negative controls. False-positive results may either be caused by cells emitting autofluorescence upon excitation or by nonspecific binding of the probe to nontarget cells. Samples should therefore be checked for autofluorescence before hybridization and a negative control with a fluorescent oligonucleotide not complementary to rRNA has to be applied to check for sequence-independent nonspecific binding. Such non-specific binding may be due to interaction of the dye compound of the probe with hydrophobic cell components. Failures to detect cells containing target sequences (false-negatives) may originate from cells with either low cellular ribosome content or limited permeability of the cell periphery for the fluorescent probe (Manz et al. 1992). With the rapidly expanding database of 16S rRNA sequences, the problem of probe specificity has become more apparent and the design of probes is becoming increasingly difficult. These problems are also applicable to PCR and other oligonucleotide-dependent techniques. The problem of probe specificity may be overcome by using multiple specific oligonucleotide probes targeting different sites on the rRNA molecule and labelled with different fluorochromes. While a single oligonucleotide target sequence may be found in a number of related taxa, the probability that target sites for three designed oligonucleotides are found in a nontarget organism is, however, much reduced.


2019 ◽  
Vol 48 (4) ◽  
pp. 2091-2106 ◽  
Author(s):  
Deepak Kumar Yadav ◽  
Dagmar Zigáčková ◽  
Maria Zlobina ◽  
Tomáš Klumpler ◽  
Christelle Beaumont ◽  
...  

Abstract Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3′UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS–STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the β1–β2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.


Sign in / Sign up

Export Citation Format

Share Document