scholarly journals Biological adaptation under fluctuating selection

2018 ◽  
Author(s):  
Ming Liu ◽  
Dustin R. Rubenstein ◽  
Wei-Chung Liu ◽  
Sheng-Feng Shen

AbstractBet-hedging—an evolutionary strategy that reduces fitness variance at the expense of lower mean fitness—is the primary explanation for most forms of biological adaptation to environmental unpredictability. However, most applications of bet-hedging theory to biological problems have largely made unrealistic demographic assumptions, such as non-overlapping generations and fixed population sizes. Consequently, the generality and applicability of bet-hedging theory to real world phenomena remains unclear. Here we use continuous-time, stochastic Lotka-Volterra models to relax overly restrictive demographic assumptions and explore a suite of biological adaptations to fluctuating environments. We discover a novel “rising-tide strategy” that—unlike the bet-hedging strategy—generates both a higher mean and variance in fitness. The positive fitness effects of the rising-tide strategy’s specialization to good years can overcome any negative effects of higher fitness variance in unpredictable environments. Moreover, we show not only that the rising-tide strategy will be selected for over a much broader range of environmental conditions than the bet-hedging strategy, but also under more realistic demographic circumstances. Ultimately, our model demonstrates that there are likely to be a wide range of ways that organisms respond to environmental unpredictability.

2019 ◽  
Vol 286 (1912) ◽  
pp. 20191623 ◽  
Author(s):  
Ming Liu ◽  
Dustin R. Rubenstein ◽  
Wei-Chung Liu ◽  
Sheng-Feng Shen

Bet-hedging—a strategy that reduces fitness variance at the expense of lower mean fitness among different generations—is thought to evolve as a biological adaptation to environmental unpredictability. Despite widespread use of the bet-hedging concept, most theoretical treatments have largely made unrealistic demographic assumptions, such as non-overlapping generations and fixed or infinite population sizes. Here, we extend the concept to consider overlapping generations by defining bet-hedging as a strategy with lower variance and mean per capita growth rate across different environments. We also define an opposing strategy—the rising-tide—that has higher mean but also higher variance in per capita growth. These alternative strategies lie along a continuum of biological adaptions to environmental fluctuation. Using stochastic Lotka–Volterra models to explore the evolution of the rising-tide versus bet-hedging strategies, we show that both the mean environmental conditions and the temporal scales of their fluctuations, as well as whether population dynamics are discrete or continuous, are crucial in shaping the type of strategy that evolves in fluctuating environments. Our model demonstrates that there are likely to be a wide range of ways that organisms with overlapping generations respond to environmental unpredictability beyond the classic bet-hedging concept.


2020 ◽  
Author(s):  
Jamilla Akhund-Zade ◽  
Denise Yoon ◽  
Alyssa Bangerter ◽  
Nikolaos Polizos ◽  
Matthew Campbell ◽  
...  

AbstractFluctuating environmental pressures can challenge organisms by repeatedly shifting the optimum phenotype. Two contrasting evolutionary strategies to cope with these fluctuations are 1) evolution of the mean phenotype to follow the optimum (adaptive tracking) or 2) diversifying phenotypes so that at least some individuals have high fitness in the current fluctuation (bet-hedging). Bet-hedging could underlie stable differences in the behavior of individuals that are present even when genotype and environment are held constant. Instead of being simply ‘noise,’ behavioral variation across individuals may reflect an evolutionary strategy of phenotype diversification. Using geographically diverse wild-derived fly strains and high-throughput assays of individual preference, we tested whether thermal preference variation in Drosophila melanogaster could reflect a bet-hedging strategy. We also looked for evidence that populations from different regions differentially adopt bet-hedging or adaptive-tracking strategies. Computational modeling predicted regional differences in the relative advantage of bet-hedging, and we found patterns consistent with that in regional variation in thermal preference heritability. In addition, we found that temporal patterns in mean preference support bet-hedging predictions and that there is a genetic basis for thermal preference variability. Our empirical results point to bet-hedging in thermal preference as a potentially important evolutionary strategy in wild populations.


2018 ◽  
Author(s):  
Mélissa Verin ◽  
Aurélien Tellier

AbstractSeed (egg) banking is a common bet-hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene-for-gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching-allele interaction, both hosts’ genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host-parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet-hedging strategy.


Author(s):  
Alexey Shcherbakov ◽  
Valentin Zhezmer

Department of hydraulic engineering and hydraulics FGBNU «VNIIGiM them. A.N. Kostyakova «has a long history. For many years, the department’s staff has been such scientists and water engineers with extensive experience as M.A. Volynov, V.S. Verbitsky, S.S. Medvedev, N.V. Lebedev, B.C. Panfilov, T.G. Voynich-Syanozhentsky, V.A. Golubkova, G.V. Lyapin and others. The department solved a wide range of tasks, the main areas of research were the following: – theoretical and applied hydrodynamics and hydraulics, with reference to the open channel flows that affect the state and level of safety of the hydraulic structures; – integrated use and protection of water bodies – water sources and water sources of water resources used in land reclamation; – development of measures and technical solutions for the protection of objects from the negative effects of water; – theoretical substantiation of works to improve the safety level of the GTS (declaration); – development and implementation of digitalization methods for solving design, construction, operation and control of landreclamation facilities. Currently, promising areas of research is the development of a decision-making algorithm in the designation of measures to rationalize the provision of resources to water amelioration. The algorithm is developed on the basis of a detailed study, systematization and processing of data both on safety and on the efficiency of systems and structures, ensuring the delivery of irrigation water of the required quality and in sufficient quantity from a water source to the field.


Author(s):  
M.A. Zemlianova ◽  
I.V. Tikhonova

Alumina refineries are among the leading sources of atmospheric air pollution with a wide range of pollutants hazardous to human respiratory organs. It is relevant to study and evaluate the occurrence of the risks for development of respiratory diseases in children living in the area affected by the emission components of an alumina refinery. We assessed air quality of the area under observation and comparison according to monitoring observations, risk of non-carcinogenic effects from the respiratory organs. The content of chemicals in the blood and urine adequate to risk factors was quantified. The structure of individual groups of respiratory diseases was analyzed. The causal relationships of violations of laboratory parameters with an increased content of chemicals in biological media were evaluated. It was found that an aerogenic exposure of chemical pollutants is formed on the territory with the production of metallurgical alumina. It determines the risk for development of respiratory diseases, exceeding an acceptable level up to 49.9 times. In the exposed children, the content of manganese, chromium, nickel, copper, xylenes, formaldehyde and aluminum, fluoride ion in the urine was increased to 4.2 times in relation to the indices in the comparison group. A high level of additional respiratory morbidity(1.8 times) was revealed. Chronic lymphoproliferative diseases of the nasopharynx and inflammatory diseases of the upper respiratory tract (up to 6.6 times more often), inflammatory diseases with a predominance of the mechanism of allergic inflammation ( up to 2.1 times more often)are more often detected in the framework of the respiratory diseases. Negative effects on the part of the respiratory system in the form of activation of antioxidant processes, the development of an inflammatory reaction, local, general and specific sensitization of the respiratory tract were established. It confirms the occurrence of the risks for the development of respiratory diseases in children in the exposure area of the chemical factors of alumina refinery-associated economic activity.


Author(s):  
Thomas R. Haaland ◽  
Jonathan Wright ◽  
Irja I. Ratikainen
Keyword(s):  

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 974
Author(s):  
Irina B. Ivshina ◽  
Maria S. Kuyukina ◽  
Anastasiia V. Krivoruchko ◽  
Elena A. Tyumina

Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with “unprofessional” parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites.


2001 ◽  
Vol 82 (4) ◽  
pp. 693-712 ◽  
Author(s):  
Peter Simmonds

The spread and origins of hepatitis C virus (HCV) in human populations have been the subject of extensive investigations, not least because of the importance this information would provide in predicting clinical outcomes and controlling spread of HCV in the future. However, in the absence of historical and archaeological records of infection, the evolution of HCV and other human hepatitis viruses can only be inferred indirectly from their epidemiology and by genetic analysis of contemporary virus populations. Some information on the history of the latter may be obtained by dating the time of divergence of various genotypes of HCV, hepatitis B virus (HBV) and the non-pathogenic hepatitis G virus (HGV)/GB virus-C (GBV-C). However, the relatively recent times predicted for the origin of these viruses fit poorly with their epidemiological distributions and the recent evidence for species-associated variants of HBV and HGV/GBV-C in a wide range of non-human primates. The apparent conservatism of viruses over long periods implied by these latter observations may be the result of constraints on sequence change peculiar to viruses with single-stranded genomes, or with overlapping reading frames. Large population sizes and intense selection pressures that optimize fitness may be the factors that set virus evolution apart from that of their hosts.


Sign in / Sign up

Export Citation Format

Share Document