scholarly journals Alterations in sialic-acid O-acetylation glycoforms during murine erythrocyte development

2018 ◽  
Author(s):  
Vinay S. Mahajan ◽  
Faisal Alsufyani ◽  
Hamid Mattoo ◽  
Ian Rosenberg ◽  
Shiv Pillai

ABSTRACT9-O-acetylation of sialic acid is a common modification that plays important roles in host-pathogen interactions. CASD1 has been described as a sialate-O-acetyltransferase and has been shown to be essential for 9-O-acetylation of sialic acid in some cell lines in vitro. In this study, we used knockout mice to confirm that CASD1 is indeed responsible for 9-O-acetylation of sialic acids in vivo. We observed a complete loss of 9-O-acetylation of sialic acids on the surface of myeloid, erythroid and CD4+ T cells in Casd1-deficient mice. Although 9-O-acetylation of sialic acids on multiple hematopoietic lineages was lost, there were no obvious defects in hematopoiesis. Interestingly, red blood cells from Casd1-deficient mice also lost reactivity to TER-119, a rat monoclonal antibody that is widely used to mark the murine erythroid lineage. The sialic acid glyco-epitope recognized by TER-119 on red blood cells was sensitive to the sialic acid O-acetyl esterase activity of the hemagglutinin esterase from bovine coronavirus but not to the corresponding enzyme from the influenza C virus. During erythrocyte development TER-119+ Ery-A and Ery-B cells could be stained by catalytically inactive bovine coronavirus hemaggutinin-esterase but not by the inactive influenza C hemagglutinin esterase, while TER-119+ Ery-C stage cells and mature erythrocytes were recognized by both virolectins. These results suggest that throughout murine erythrocyte development, cells of the erythroid lineage express a glycoconjugate bearing a modified 7,9-di-O-acetyl form of sialic acid, that is recognized specifically by the bovine coronavirus lectin and not by the influenza C hemagglutinin, and this modified sialic acid moiety is a component of the TER-119 epitope. As erythrocytes mature, the surface of Ery-C cells and mature erythrocytes also acquires a distinct CASD1-dependent 9-O-acetyl sialic acid moiety that can be recognized by virolectins from both influenza C and bovine coronavirus that are specific for 9-O-acetyl sialic acid.

2020 ◽  
Vol 21 (21) ◽  
pp. 8098
Author(s):  
Paola Rota ◽  
Paolo La Rocca ◽  
Pietro Allevi ◽  
Carlo Pappone ◽  
Luigi Anastasia

The so-called “sialo-chemical-biology” has become an attractive research area, as an increasing number of natural products containing a sialic acid moiety have been shown to play important roles in biological, pathological, and immunological processes. The intramolecular lactones of sialic acids are a subclass from this crucial family that could have central functions in the discrimination of physiological and pathological conditions. In this review, we report an in-depth analysis of the synthetic achievements in the preparation of the intramolecular lactones of sialic acids (1,4-, 1,7- and γ-lactones), in their free and/or protected form. In particular, recent advances in the synthesis of the 1,7-lactones have allowed the preparation of key sialic acid derivatives. These compounds could be used as authentic reference standards for their correct determination in biological samples, thus overcoming some of the limitations of the previous analytical procedures.


2021 ◽  
Author(s):  
Sarah Lapidus ◽  
Feimei Liu ◽  
Arnau Casanovas-Massana ◽  
Yile Dai ◽  
John D. Huck ◽  
...  

Individuals with acute malaria infection generated high levels of antibodies that cross-react with the SARS-CoV-2 Spike protein. Cross-reactive antibodies specifically recognized the sialic acid moiety on N-linked glycans of the Spike protein and do not neutralize in vitro SARS-CoV-2. Sero-surveillance is critical for monitoring and projecting disease burden and risk during the pandemic; however, routine use of Spike protein-based assays may overestimate SARS-CoV-2 exposure and population-level immunity in malaria-endemic countries.


1984 ◽  
Vol 137 (2) ◽  
pp. 429-436 ◽  
Author(s):  
R. Carubelli ◽  
G. Wen ◽  
D.R. McCaffree

Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2013 ◽  
Vol 1 (Suppl. 1) ◽  
pp. A4.1
Author(s):  
Angela Storka
Keyword(s):  

1950 ◽  
Vol 183 (2) ◽  
pp. 757-765 ◽  
Author(s):  
David Shemin ◽  
Irving M. London ◽  
D. Rittenberg
Keyword(s):  

2021 ◽  
pp. 153537022110132
Author(s):  
Shu-Qin Liu ◽  
Xiao-Ye Hou ◽  
Feng Zhao ◽  
Xiao-Ge Zhao

Heart regeneration is negligible in humans and mammals but remarkable in some ectotherms. Humans and mammals lack nucleated red blood cells (NRBCs), while ectotherms have sufficient NRBCs. This study used Bufo gargarizan gargarizan, a Chinese toad subspecies, as a model animal to verify our hypothesis that NRBCs participate in myocardial regeneration. NRBC infiltration into myocardium was seen in the healthy toad hearts. Heart needle-injury was used as an enlarged model of physiological cardiomyocyte loss. It recovered quickly and scarlessly. NRBC infiltration increased during the recovery. Transwell assay was done to in vitro explore effects of myocardial injury on NRBCs. In the transwell system, NRBCs could infiltrate into cardiac pieces and could transdifferentiate toward cardiomyocytes. Heart apex cautery caused approximately 5% of the ventricle to be injured to varying degrees. In the mildly to moderately injured regions, NRBC infiltration increased and myocardial regeneration started soon after the inflammatory response; the severely damaged region underwent inflammation, scarring, and vascularity before NRBC infiltration and myocardial regeneration, and recovered scarlessly in four months. NRBCs were seen in the newly formed myocardium. Enzyme-linked immunosorbent assay and Western blotting showed that the levels of tumor necrosis factor-α, interleukin- 1β, 6, and11, cardiotrophin-1, vascular endothelial growth factor, erythropoietin, matrix metalloproteinase- 2 and 9 in the serum and/or cardiac tissues fluctuated in different patterns during the cardiac injury-regeneration. Cardiotrophin-1 could induce toad NRBC transdifferentiation toward cardiomyocytes in vitro. Taken together, the results suggest that the NRBC is a cell source for cardiomyocyte renewal/regeneration in the toad; cardiomyocyte loss triggers a series of biological processes, facilitating NRBC infiltration and transition to cardiomyocytes. This finding may guide a new direction for improving human myocardial regeneration.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
YUHAO QIANG ◽  
Jia Liu ◽  
Ming Dao ◽  
E Du

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that...


Sign in / Sign up

Export Citation Format

Share Document