scholarly journals Detoxification of host plant phenolic aglycones by the spruce budworm

2018 ◽  
Author(s):  
Dominic Donkor ◽  
Zahra Mirzahosseini ◽  
Jacquie Bede ◽  
Eric Bauce ◽  
Emma Despland

AbstractThis study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (Choristoneura fumiferana). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione-conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.




2001 ◽  
Vol 47 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Qi-Li Feng ◽  
Kenneth G Davey ◽  
Anthony S.D. Pang ◽  
Tim R Ladd ◽  
Arthur Retnakaran ◽  
...  


Author(s):  
Mikhail A. Levchenko ◽  
◽  
Elena A. Silivanova ◽  
Polina A. Shumilova ◽  
Natalya A. Sennikova ◽  
...  

This paper presents the results of the study of insecticidal susceptibility to five modern insecticides and the assessment of detoxifying enzyme activities in house flies Musca domestica L. of two field populations collected at livestock facilities in the Tyumen region. The objects of the study were larva and 3-5-days old adults of M. domestica of the laboratory strain and the first generation obtained from insects of the field populations. The lethal doses for 50% mortality of acetamiprid, fipronil, ivermectin, chlorfenapyr, and deltamethrin against adults M. domestica were calculated by the probit analysis method based on the results of the assessment of intestinal insecticidal activities of these substances by the feeding tests. The results of toxicological experiments showed that adults M. domestica of one field population were tolerant to ivermectin (the resistance ratio was 4,0) while adults of the second field population were tolerant to deltamethrin (the resistance ratio was 4,5). The field populations of M. domestica tested in this study differed in terms of detoxifying enzyme activities in adults. Carboxylesterase and glutathione-S-transferase activities were statistically significantly more in M. domestica adults of the population that was tolerant to deltamethrin than those in adults of the population tolerant to ivermectin. It needs to take into account differences (in insecticidal susceptibilities and in enzyme activities) between insect field populations inhabiting different farms when one selects pest control means against insects in livestock and poultry farms.



Author(s):  
Sangeethadevi Govindasami ◽  
Veera Venkata Sathibabu Uddandrao ◽  
Nivedha Raveendran ◽  
Vadivukkarasi Sasikumar

Background: This study determined the effect of Biochanin A (BCA) on isoproterenol (ISO) induced Myocardial Infarction (MI) in male Wistar rats. Methods: Animals (weighing 150-180 g) were divided into four groups, with six animals in each group and pretreated with BCA (10mg/kg Body Weight [BW]) and ɑ-tocopherol (60mg/kg BW) for 30 days; and ISO (20mg/kg BW) was administrated subcutaneously on the 31st and 32nd day. Results: ISO-induced MI rats demonstrated the significant elevation of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, lactate dehydrogenase, creatine kinase-MB and cardiac troponin; however, concomitant pretreatment with BCA protected the rats from cardiotoxicity caused by ISO. Activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase significantly reduced in the heart with ISO-induced MI. Pretreatment with BCA produced a marked reversal of these antioxidant enzymes related to MI-induced by ISO. Conclusion: In conclusion, this study suggested that BCA exerts cardioprotective effects through modulating lipid peroxidation, enhancing antioxidants, and detoxifying enzyme systems.



2003 ◽  
Vol 14 (03) ◽  
pp. 134-143 ◽  
Author(s):  
James J. Klemens ◽  
Robert P. Meech ◽  
Larry F. Hughes ◽  
Satu Somani ◽  
Kathleen C.M. Campbell

This study's purpose was to determine if a correlation exists between cochlear antioxidant activity changes and auditory function after induction of aminoglycoside (AG) ototoxicity. Two groups of five 250-350 g albino guinea pigs served as subjects. For 28 days, albino guinea pigs were administered either 200 mg/kg/day amikacin, or saline subcutaneously. Auditory brainstem response testing was performed prior to the first injection and again before sacrifice, 28 days later. Cochleae were harvested and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase activities and malondialdehyde levels were measured. All antioxidant enzymes had significantly lower activity in the amikacin group (p ≤ 0.05) than in the control group. The difference in cochlear antioxidant enzyme activity between groups inversely correlated significantly with the change in ABR thresholds. The greatest correlation was for the high frequencies, which are most affected by aminoglycosides. This study demonstrates that antioxidant enzyme activity and amikacin-induced hearing loss significantly covary.



Sign in / Sign up

Export Citation Format

Share Document