scholarly journals Regulation of Parent-of-Origin Allelic Expression in Arabidopsis thaliana endosperm

2019 ◽  
Author(s):  
Karina S. Hornslien ◽  
Jason R. Miller ◽  
Paul E. Grini

AbstractGenomic imprinting is an epigenetic phenomenon set in the gametes prior to fertilization that causes differential expression of parental alleles mainly in the endosperm of flowering plants. The overlap between previously identified panels of imprinted genes is limited. In order to achieve high resolution sequencing data we have used sequence capture technology to investigate imprinting. Here, we present a bioinformatics pipeline to assay parent-of-origin allele specific expression and report more than 300 loci with parental expression bias. We find that the level of expression from maternal and paternal alleles in most cases is not binary, instead favouring a differential dosage hypothesis for the evolution of imprinting in plants. To address imprinting regulation, we systematically employed mutations in regulative epigenetic pathways suggested to be major players in the process. We establish the mechanistic mode of imprinting for more than 50 loci regulated by DNA methylation and Polycomb-dependent histone methylation. However, the imprinting patterns of the majority of genes were not affected by these mechanisms. To this end we also demonstrate that the RNA-directed DNA methylation pathway alone does not influence imprinting patterns in a substantial manner, suggesting more complex epigenetic regulation pathways for the majority of identified imprinted genes.Author summaryExpression of gene copies only from the mother or the father’s genome, also termed imprinting, is a specialized epigenetic phenomenon that is found to be enriched at some genes expressed in the mammalian placenta and in the endosperm of the plant seed. Although several studies have reported on imprinted genes in plants, the identified loci are at large non-overlapping between reports. This motivated us to investigate in detail the expression pattern of imprinted genes in the endosperm and to determine how imprinting patterns are established at various imprinted loci. Although several underlying epigenetic regulation mechanisms have been demonstrated to establish imprinting patterns at certain genes, the majority of imprinted genes have not been linked to such mechanisms. In the present study we systematically investigated the mechanisms that are involved in establishing imprinting, by employing mutants of epigenetic regulators and high-throughput sequencing. In our high resolution study, we report more than 300 imprinted genes and demonstrate that the biological phenomenon imprinting involves gradual expression of parental gene copies rather than switching gene copies on or off. Notably, for the majority of imprinted genes, the mechanisms previously believed to be major to establish their imprinting patterns, are not responsible for mediating imprinting.

Author(s):  
Hisato Kobayashi

Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.


2021 ◽  
Vol 118 (5) ◽  
pp. e2005377118
Author(s):  
Weijun Jiang ◽  
Jiajia Shi ◽  
Jingjie Zhao ◽  
Qiu Wang ◽  
Dan Cong ◽  
...  

ZFP57 is a master regulator of genomic imprinting. It has both maternal and zygotic functions that are partially redundant in maintaining DNA methylation at some imprinting control regions (ICRs). In this study, we found that DNA methylation was lost at most known ICRs in Zfp57 mutant embryos. Furthermore, loss of ZFP57 caused loss of parent-of-origin–dependent monoallelic expression of the target imprinted genes. The allelic expression switch occurred in the ZFP57 target imprinted genes upon loss of differential DNA methylation at the ICRs in Zfp57 mutant embryos. Specifically, upon loss of ZFP57, the alleles of the imprinted genes located on the same chromosome with the originally methylated ICR switched their expression to mimic their counterparts on the other chromosome with unmethylated ICR. Consistent with our previous study, ZFP57 could regulate the NOTCH signaling pathway in mouse embryos by impacting allelic expression of a few regulators in the NOTCH pathway. In addition, the imprinted Dlk1 gene that has been implicated in the NOTCH pathway was significantly down-regulated in Zfp57 mutant embryos. Our allelic expression switch models apply to the examined target imprinted genes controlled by either maternally or paternally methylated ICRs. Our results support the view that ZFP57 controls imprinted expression of its target imprinted genes primarily through maintaining differential DNA methylation at the ICRs.


2019 ◽  
Vol 63 (6) ◽  
pp. 663-676 ◽  
Author(s):  
Simão Teixeira da Rocha ◽  
Anne-Valerie Gendrel

Abstract Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.


2019 ◽  
Author(s):  
Ali Javadmanesh ◽  
Afsaneh Mojtabanezhad Shariatpanahi ◽  
Ehsan Shams Davodly ◽  
Marjan Azghandi ◽  
Maryam Yassi ◽  
...  

Abstract Background DNA methylation is a fundamental epigenetic process that, in most cases, modulates genetic expression levels. Changes in DNA methylation, either hypo- or hypermethylation, have a key role in many biological processes and several human diseases such as cancer. In the current study, we offered an approach to validate the next generation methylation sequencing data.Methods Genomic DNA was extracted from target and control samples (6 in each group), followed by bisulfite conversion. Next generation methylation sequencing and methylation sensitive high-resolution melting assay were carried out. The primers for methylation sequencing validation were designed by R programming language.Results In the current study, two groups, case and control, were discriminated based on methylation sequencing results and the real time PCR-based results were in accordance with the next generation methylation sequencing.Discussion Methylation sensitive high-resolution melting validation assay is a simple and cost-effective method, which confirmed next generation methylation sequencing results.


2010 ◽  
Vol 30 (16) ◽  
pp. 3916-3928 ◽  
Author(s):  
Jamie R. Weaver ◽  
Garnik Sarkisian ◽  
Christopher Krapp ◽  
Jesse Mager ◽  
Mellissa R. W. Mann ◽  
...  

ABSTRACT Imprinted genes are expressed in a monoallelic, parent-of-origin-specific manner. Clusters of imprinted genes are regulated by imprinting control regions (ICRs) characterized by DNA methylation of one allele. This methylation is critical for imprinting; a reduction in the DNA methyltransferase DNMT1 causes a widespread loss of imprinting. To better understand the role of DNA methylation in the regulation of imprinting, we characterized the effects of Dnmt1 mutations on the expression of a panel of imprinted genes in the embryo and placenta. We found striking differences among imprinted domains. The Igf2 and Peg3 domains showed imprinting perturbations with both null and partial loss-of-function mutations, and both domains had pairs of coordinately regulated genes with opposite responses to loss of DNMT1 function, suggesting these domains employ similar regulatory mechanisms. Genes in the Kcnq1 domain were less sensitive to the absence of DNMT1. Cdkn1c exhibited imprinting perturbations only in null mutants, while Kcnq1 and Ascl2 were largely unaffected by a loss of DNMT1 function. These results emphasize the critical role for DNA methylation in imprinting and reveal the different ways it controls gene expression.


2006 ◽  
Vol 18 (2) ◽  
pp. 63 ◽  
Author(s):  
Jacquetta M. Trasler

The acquisition of genomic DNA methylation patterns, including those important for development, begins in the germ line. In particular, imprinted genes are differentially marked in the developing male and female germ cells to ensure parent-of-origin-specific expression in the offspring. Abnormalities in imprints are associated with perturbations in growth, placental function, neurobehavioural processes and carcinogenesis. Based, for the most part, on data from the well-characterised mouse model, the present review will describe recent studies on the timing and mechanisms underlying the acquisition and maintenance of DNA methylation patterns in gametes and early embryos, as well as the consequences of altering these patterns.


2020 ◽  
Author(s):  
H. Marshall ◽  
A.R.C. Jones ◽  
Z.N. Lonsdale ◽  
E.B. Mallon

AbstractAllele-specific expression is when one allele of a gene shows higher levels of expression compared to the other allele, in a diploid organism. Genomic imprinting is an extreme example of this, where some genes exhibit allele-specific expression in a parent-of-origin manner. Recent work has identified potentially imprinted genes in species of Hymenoptera. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals DNA methylation is often associated with imprinted genes. DNA methylation systems have been described in species of Hymenoptera, providing a candidate imprinting mechanism. Using previously generated RNA-Seq and whole genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive castes and the proportion of allele-specific expression bias generally varies between colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both castes. There is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that DNA methylation does not directly drive genome-wide allele-specific expression in this species. Only a small number of the genes identified may be ‘imprinted’ and it may be these genes which are associated with allele-specific DNA methylation. Future work utilising reciprocal crosses to identify parent-of-origin DNA methylation will further clarify the role of DNA methylation in parent-of-origin allele-specific expression.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 639
Author(s):  
Emily Angiolini ◽  
Ionel Sandovici ◽  
Philip M. Coan ◽  
Graham J. Burton ◽  
Colin P. Sibley ◽  
...  

Genomic imprinting, an epigenetic phenomenon that causes the expression of a small set of genes in a parent-of-origin-specific manner, is thought to have co-evolved with placentation. Many imprinted genes are expressed in the placenta, where they play diverse roles related to development and nutrient supply function. However, only a small number of imprinted genes have been functionally tested for a role in nutrient transfer capacity in relation to the structural characteristics of the exchange labyrinthine zone. Here, we examine the transfer capacity in a mouse model deficient for the maternally expressed Phlda2 gene, which results in placental overgrowth and a transient reduction in fetal growth. Using stereology, we show that the morphology of the labyrinthine zone in Phlda2−/+ mutants is normal at E16 and E19. In vivo placental transfer of radiolabeled solutes 14C-methyl-D-glucose and 14C-MeAIB remains unaffected at both gestational time points. However, placental passive permeability, as measured using two inert hydrophilic solutes (14C-mannitol; 14C-inulin), is significantly higher in mutants. Importantly, this increase in passive permeability is associated with fetal catch-up growth. Our findings uncover a key role played by the imprinted Phlda2 gene in modifying placental passive permeability that may be important for determining fetal growth.


2021 ◽  
Vol 118 (29) ◽  
pp. e2104445118
Author(s):  
Jessica A. Rodrigues ◽  
Ping-Hung Hsieh ◽  
Deling Ruan ◽  
Toshiro Nishimura ◽  
Manoj K. Sharma ◽  
...  

Parent-of-origin–dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin–specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA–producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions—the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.


Sign in / Sign up

Export Citation Format

Share Document