scholarly journals Asymmetry in marginal population performance foreshadows widespread species range shifts

2019 ◽  
Author(s):  
Fernando Pulido ◽  
Bastien Castagneyrol ◽  
Francisco Rodríguez-Sánchez ◽  
Yónatan Cáceres ◽  
Adhara Pardo ◽  
...  

While current climate change is altering the distribution of species worldwide1, a poor understanding of the mechanisms involved limits our ability to predict future range dynamics. Range shifts are expected to occur when populations at one range margin perform better than those at the other margin2, yet no such global trend has been demonstrated empirically. Here we show that populations at high-latitude range margins generally perform as well as those from the range centre, whereas populations at low-latitude margins perform markedly worse. The trend is moderate but pervasive across plants and animals and terrestrial and marine environments. Such global asymmetry in performance between range edges signals that species are in disequilibrium with current environmental conditions. Our findings are consistent with predicted impacts of a warming climate and imply that the geographic ranges of species are undergoing directional changes. They highlight the pressing need for a more thorough knowledge of population dynamics across species ranges as a mean to forecast climate change impacts on the structure and function of ecosystems across the globe.


Wetlands ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 893-899
Author(s):  
Bethany Carl Kraft ◽  
Raelene Crandall

Abstract The 2010 Deepwater Horizon (DWH) oil spill resulted in extensive damage to the northern Gulf of Mexico ecosystem. Resulting fines and penalties have triggered one of the largest ecological restoration efforts in U.S. history. Nearly $20 Billion in funding from oil spill-related claims and settlements will be available in the coming years for environmental restoration and economic recovery. At the same time, climate change is also impacting ecosystem form and function in the Gulf region, which could undermine the long-term sustainability of projects by limiting their useful life or impeding anticipated benefits over time (e.g., ecosystem services, flood protection). These challenges can be considered and addressed in project planning, selection and adaptive management phases of restoration. If decision-makers do not consider the longevity of projects in the face of climate-related stressors, in 30 to 50 years there could be very little to show for a $20 Billion investment, with the Gulf ecosystem still in need of extensive restoration but without the monetary resources to accomplish restoration goals and mitigate climate-related impacts. This paper provides a framework for decision makers to consider how to incorporate climate change considerations for wetland restoration activities related to the DWH spill.



2017 ◽  
Vol 114 (18) ◽  
pp. 4697-4702 ◽  
Author(s):  
Jasper A. Slingsby ◽  
Cory Merow ◽  
Matthew Aiello-Lammens ◽  
Nicky Allsopp ◽  
Stuart Hall ◽  
...  

Prolonged periods of extreme heat or drought in the first year after fire affect the resilience and diversity of fire-dependent ecosystems by inhibiting seed germination or increasing mortality of seedlings and resprouting individuals. This interaction between weather and fire is of growing concern as climate changes, particularly in systems subject to stand-replacing crown fires, such as most Mediterranean-type ecosystems. We examined the longest running set of permanent vegetation plots in the Fynbos of South Africa (44 y), finding a significant decline in the diversity of plots driven by increasingly severe postfire summer weather events (number of consecutive days with high temperatures and no rain) and legacy effects of historical woody alien plant densities 30 y after clearing. Species that resprout after fire and/or have graminoid or herb growth forms were particularly affected by postfire weather, whereas all species were sensitive to invasive plants. Observed differences in the response of functional types to extreme postfire weather could drive major shifts in ecosystem structure and function such as altered fire behavior, hydrology, and carbon storage. An estimated 0.5 °C increase in maximum temperature tolerance of the species sets unique to each survey further suggests selection for species adapted to hotter conditions. Taken together, our results show climate change impacts on biodiversity in the hyperdiverse Cape Floristic Region and demonstrate an important interaction between extreme weather and disturbance by fire that may make flammable ecosystems particularly sensitive to climate change.



2021 ◽  
Vol 42 (2) ◽  
pp. 254-275
Author(s):  
Tero Mustonen

The applicability of Indigenous ethics to the evaluation of ecological restoration is explored through two case examples involving the Indigenous Sámi rivers of Näätämö and Ponoi in the European North. Six key restoration approaches are described that would have been overlooked had it not been for the use of Indigenous ethics from the start of the work. The detection of rapidly proceeding climate change impacts and species range shifts, algae blooms, documentation of gendered coastal lifestyles, and ultimately the ecological restoration of salmonid habitats were recognized as critical markers of success when these approaches were practiced, lived and cherished by all members of the cogovernance community. This article asks critical questions about the role of Indigenous knowledge and rights within comanagement and environmental evaluations and makes the case for land-based lifestyles as vehicles for maintaining distinct, culturally relevant ethics processes.



2021 ◽  
Vol 9 ◽  
Author(s):  
Lara P. Brodie ◽  
Kerry-Anne Grey ◽  
Jacqueline M. Bishop ◽  
Guy F. Midgley

Concerns have been raised about attribution of species range shifts to anthropogenic climate change. Species paleo-range projections are emerging as a means to broaden understanding of range shifts and could be applied to assist in attribution. Apparent recent range contraction in the Quiver Tree (Aloidendron dichotomum (Masson) Klopper and Gideon F.Sm) has been attributed to anthropogenic climate change, but this has been challenged. We simulated the paleo- and future geographic range of A. dichotomum under changing climate using species distribution models (SDMs) to provide a broader perspective on its range dynamics. Ensemble modelling of the Last Glacial Maximum (LGM), mid-Holocene, current, and projected 2070 time periods simulates a paleo-historical poleward expansion of suitable bioclimatic space for this species under natural climate change post-LGM, and projects an eastward shift towards 2070. During the LGM, suitable bioclimatic space for A. dichotomum was simulated to be restricted to the equatorward part of its current range. During the Pleistocene/mid-Holocene climate transition period, the species’ range is predicted to have expanded significantly polewards at an average rate of 0.4 km per decade, assuming constant tracking of its optimal climatic niche. By 2070, suitable bioclimatic space is projected to expand further eastward into the summer rainfall region of South Africa, and contract in its equatorward reaches. Simulated post-LGM shifts roughly match expectations based on preliminary phylogenetic information, further supporting the attribution of current population declines to anthropogenic climate change drivers. Equatorward populations are required to migrate south-eastwards at a rate roughly 15 times faster than that calculated for the LGM/mid-Holocene climate transition period to avoid local extirpation. A preliminary analysis of range-wide genetic variation reveals a cline of variation, with generally higher levels in the central and more northerly part of the species distribution, as expected from the proposed paleo-range of the species. A more detailed analysis of the species’ phylogeographic history could be used to test the proposed paleo-range dynamics presented here, and if confirmed, would provide strong support for the use of this species as an indicator of anthropogenic climate change and a powerful case study for testing the implementation of conservation actions.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. Åhlén ◽  
G. Vigouroux ◽  
G. Destouni ◽  
J. Pietroń ◽  
N. Ghajarnia ◽  
...  

AbstractAssessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.



PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247290
Author(s):  
Allison M. Louthan ◽  
William Morris

Impacts of climate change can differ substantially across species’ geographic ranges, and impacts on a given population can be difficult to predict accurately. A commonly used approximation for the impacts of climate change on the population growth rate is the product of local changes in each climate variable (which may differ among populations) and the sensitivity (the derivative of the population growth rate with respect to that climate variable), summed across climate variables. However, this approximation may not be accurate for predicting changes in population growth rate across geographic ranges, because the sensitivities to climate variables or the rate of climate change may differ among populations. In addition, while this approximation assumes a linear response of population growth rate to climate, population growth rate is typically a nonlinear function of climate variables. Here, we use climate-driven integral projection models combined with projections of future climate to predict changes in population growth rate from 2008 to 2099 for an uncommon alpine plant species, Douglasia alaskana, in a rapidly warming location, southcentral Alaska USA. We dissect the causes of among-population variation in climate change impacts, including magnitude of climate change in each population and nonlinearities in population response to climate change. We show that much of the variation in climate change impacts across D. alaskana’s range arises from nonlinearities in population response to climate. Our results highlight the critical role of nonlinear responses to climate change impacts, suggesting that current responses to increases in temperature or changes in precipitation may not continue indefinitely under continued changes in climate. Further, our results suggest the degree of nonlinearity in climate responses and the shape of responses (e.g., convex or concave) can differ substantially across populations, such that populations may differ dramatically in responses to future climate even when their current responses are quite similar.



2019 ◽  
Vol 3 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Ryan F. Heneghan ◽  
Ian A. Hatton ◽  
Eric D. Galbraith

Abstract Climate change is a complex global issue that is driving countless shifts in the structure and function of marine ecosystems. To better understand these shifts, many processes need to be considered, yet they are often approached from incompatible perspectives. This article reviews one relatively simple, integrated perspective: the abundance-size spectrum. We introduce the topic with a brief review of some of the ways climate change is expected to impact the marine ecosystem according to complex numerical models while acknowledging the limits to understanding posed by complex models. We then review how the size spectrum offers a simple conceptual alternative, given its regular power law size-frequency distribution when viewed on sufficiently broad scales. We further explore how anticipated physical aspects of climate change might manifest themselves through changes in the elevation, slope and regularity of the size spectrum, exposing mechanistic questions about integrated ecosystem structure, as well as how organism physiology and ecological interactions respond to multiple climatic stressors. Despite its application by ecosystem modellers and fisheries scientists, the size spectrum perspective is not widely used as a tool for monitoring ecosystem adaptation to climate change, providing a major opportunity for further research.



2013 ◽  
Vol 9 (1) ◽  
pp. 20120806 ◽  
Author(s):  
Steven L. Chown ◽  
Peter C. le Roux ◽  
Tshililo Ramaswiela ◽  
Jesse M. Kalwij ◽  
Justine D. Shaw ◽  
...  

Climate change leads to species range shifts and consequently to changes in diversity. For many systems, increases in diversity capacity have been forecast, with spare capacity to be taken up by a pool of weedy species moved around by humans. Few tests of this hypothesis have been undertaken, and in many temperate systems, climate change impacts may be confounded by simultaneous increases in human-related disturbance, which also promote weedy species. Areas to which weedy species are being introduced, but with little human disturbance, are therefore ideal for testing the idea. We make predictions about how such diversity capacity increases play out across elevational gradients in non-water-limited systems. Then, using modern and historical data on the elevational range of indigenous and naturalized alien vascular plant species from the relatively undisturbed sub-Antarctic Marion Island, we show that alien species have contributed significantly to filling available diversity capacity and that increases in energy availability rather than disturbance are the probable underlying cause.



Sign in / Sign up

Export Citation Format

Share Document