scholarly journals Dedifferentiation orchestrated through remodeling of the chromatin landscape defines PSEN1 mutation-induced Alzheimer’s Disease

2019 ◽  
Author(s):  
Andrew B. Caldwell ◽  
Qing Liu ◽  
Gary P. Schroth ◽  
Rudolph E. Tanzi ◽  
Douglas R. Galasko ◽  
...  

AbstractEarly-Onset Familial Alzheimer’s Disease (EOFAD) is a dominantly inherited neurodegenerative disorder elicited by mutations in the PSEN1, PSEN2, and APP genes1. Hallmark pathological changes and symptoms observed, namely the accumulation of misfolded Amyloid-β (Aβ) in plaques and Tau aggregates in neurofibrillary tangles associated with memory loss and cognitive decline, are understood to be temporally accelerated manifestations of the more common sporadic Late-Onset Alzheimer’s Disease. The complete penetrance of EOFAD-causing mutations has allowed for experimental models which have proven integral to the overall understanding of AD2. However, the failure of pathology-targeting therapeutic development suggests that the formation of plaques and tangles may be symptomatic and not describe the etiology of the disease3,4. Here, we use an integrative, multi-omics approach and systems-level analysis in hiPSC-derived neurons to generate a mechanistic disease model for EOFAD. Using patient-specific cells from donors harboring mutations in PSEN1 differentiated into neurons, we characterize the disease-related gene expression and chromatin accessibility changes by RNA- Seq, ATAC-Seq, and histone methylation ChIP-Seq. We show that the defining disease-causing mechanism of EOFAD is dedifferentiation, primarily through the REST-mediated repression of neuronal lineage specification gene programs and the activation of non-specific germ layer precursor gene programs concomitant with modifications in chromatin accessibility. These gene signature profiles and changes in chromatin topology illustrate that EOFAD neurons traverse the chromatin landscape from an ectodermal origin to a mixed germ lineage state. Further, a reanalysis of existing transcriptomic data from PSEN1 patient brain samples demonstrates that the mechanisms identified in our experimental system recapitulate EOFAD in the human brain. Our results comprise a disease model which describes the mechanisms culminating in dedifferentiation that precede amyloid and tau pathology formation and engender neurodegeneration.

2020 ◽  
Vol 26 (12) ◽  
pp. 1286-1299 ◽  
Author(s):  
Miren Ettcheto ◽  
Oriol Busquets ◽  
Triana Espinosa-Jiménez ◽  
Ester Verdaguer ◽  
Carme Auladell ◽  
...  

: Late-onset Alzheimer’s disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid β-protein (Aβ) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. : Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aβ in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.


Author(s):  
Nicole Koutsodendris ◽  
Maxine R. Nelson ◽  
Antara Rao ◽  
Yadong Huang

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rohit Bhatia ◽  
Sankha Shubhra Chakrabarti ◽  
Upinder Kaur ◽  
Gaurav Parashar ◽  
Anindita Banerjee ◽  
...  

: Alzheimer's disease (AD) is an age-associated neurodegenerative disorder and is one of the common health issues around the globe. It is characterized by memory loss and a decline in other cog- nitive domains, including executive function. The progression of AD is associated with complex events, and the exact pathogenesis is still unrevealed. Various mechanisms which are thought to be associated with the initiation of AD include a decreased concentration of acetylcholine (ACh), deposi- tion of amyloid-β (Aβ)peptide, dyshomeostasis of redox metal ions, and prolonged oxidative stress. Due to the simultaneous progression of diverse pathogenetic pathways, no ideal therapeutic agent has been developed to date. The drugs which are available against AD provide only symptomatic benefits and do not have disease-modifying activity. Therefore, in search of ideal therapeutic candidates, the concept of molecular hybrids has been under keen investigation for the past few years. Hybrid mole- cules are able to inhibit or activate or modify the physiology of more than one target simultaneously. Coumarin scaffolds have shown the excellent potential of ACh esterase inhibition, MAO-B inhibition, and anti-Aβ aggregation. In the present review, we have focused on different reported coumarin hy- brids as multi-target-directed agents against AD. These include hybrids of coumarin with carbazole, benzofuran, dithiocarbamate, quinoline, pargyline, tacrine, N-benzyl pyridinium, donepezil, purine, piperidine, morpholine, aminophenol, benzylamino, halophenylalkylamidic, thiazole, thiourea, hy- droxypyridinone, triazole, piperazine, chalcone, etc. Along with the therapeutic potentials of these hy- brids, important clinical investigations and the structure-activity relationship has also been discussed in this compilation.


2021 ◽  
Author(s):  
Carla Cuni-Lopez ◽  
Hazel Quek ◽  
Lotta Oikari ◽  
Romal Stewart ◽  
Tam Hong Nguyen ◽  
...  

Abstract Alzheimer’s disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain’s resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that faithfully recapitulates patient-specific microglial characteristics. To address this shortcoming, we developed novel 3D models of monocyte-derived microglia-like cells (MDMi) from AD patients. MDMi in 3D exhibited mature microglial features, including a highly branched morphology and enhanced bonafide microglial marker expression compared to 2D. AD MDMi in 3D co-culture with neuro-glial cells showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-β. Drug screening assays in 3D AD MDMi revealed different cytokine responses compared to 2D. Our study demonstrates disease- and drug-specific responses in 3D MDMi models that are not apparent in 2D and presents a new 3D platform for more effective and personalised drug testing.


2017 ◽  
Author(s):  
Sarah J. Marzi ◽  
Teodora Ribarska ◽  
Adam R. Smith ◽  
Eilis Hannon ◽  
Jeremie Poschmann ◽  
...  

AbstractAlzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by the progressive accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles in the neocortex. Recent studies have implicated a role for regulatory genomic variation in AD progression, finding widespread evidence for altered DNA methylation associated with neuropathology. To date, however, no study has systematically examined other types of regulatory genomic modifications in AD. In this study, we quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) - a robust mark of active enhancers and promoters that is strongly correlated with gene expression and transcription factor binding - in entorhinal cortex samples from AD cases and matched controls (n = 47) using chromatin immunoprecipitation followed by highly parallel sequencing (ChIP-seq). Across ~182,000 robustly detected H3K27ac peak regions, we found widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (FDR < 0.05) between AD cases and controls. These differentially acetylated peaks are enriched in disease-specific biological pathways and include regions annotated to multiple genes directly involved in the progression of Aβ and tau pathology (e.g. APP, PSEN1, PSEN2, MAPT), as well as genomic regions containing variants associated with sporadic late-onset AD. This is the first study of variable H3K27ac yet undertaken in AD and the largest study investigating this modification in the entorhinal cortex. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease, integrating our data with results obtained from genome-wide association studies as well as other epigenetic marks profiled on the same samples.


2021 ◽  
Author(s):  
Carla Cuní-López ◽  
Hazel Quek ◽  
Lotta E. Oikari ◽  
Romal Stewart ◽  
Tam Hong Nguyen ◽  
...  

AbstractAlzheimer’s disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain’s resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that faithfully recapitulates patient-specific microglial characteristics. To address this shortcoming, we developed novel 3D models of monocyte-derived microglia-like cells (MDMi) from AD patients. MDMi in 3D exhibited mature microglial features, including a highly branched morphology and enhanced bonafide microglial marker expression compared to 2D. Moreover, AD MDMi in 3D co-cultures with neuro-glial cells showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-β. Drug screening assays in 3D AD MDMi revealed different cytokine responses compared to 2D. Our study demonstrates disease- and drug-specific responses in 3D MDMi models that are not apparent in 2D and presents a new 3D platform for more effective and personalised drug testing.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2018 ◽  
Vol 15 (4) ◽  
pp. 386-398 ◽  
Author(s):  
Fabricio Ferreira de Oliveira ◽  
Elizabeth Suchi Chen ◽  
Marilia Cardoso Smith ◽  
Paulo Henrique Ferreira Bertolucci

Background: While the angiotensin-converting enzyme degrades amyloid-β, angiotensinconverting enzyme inhibitors (ACEis) may slow cognitive decline by way of cholinergic effects, by increasing brain substance P and boosting the activity of neprilysin, and by modulating glucose homeostasis and augmenting the secretion of adipokines to enhance insulin sensitivity in patients with Alzheimer’s disease dementia (AD). We aimed to investigate whether ACE gene polymorphisms rs1800764 and rs4291 are associated with cognitive and functional change in patients with AD, while also taking APOE haplotypes and anti-hypertensive treatment with ACEis into account for stratification. Methods: Consecutive late-onset AD patients were screened with cognitive tests, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic correlations were estimated for one year, considering APOE and ACE genotypes and haplotypes, and treatment with ACEis. Results: For 193 patients, minor allele frequencies were 0.497 for rs1800764 – C (44.6% heterozygotes) and 0.345 for rs4291 – T (38.9% heterozygotes), both in Hardy-Weinberg equilibrium. Almost 94% of all patients used cholinesterase inhibitors, while 155 (80.3%) had arterial hypertension, and 124 used ACEis. No functional impacts were found regarding any genotypes or pharmacological treatment. Either for carriers of ACE haplotypes that included rs1800764 – T and rs4291 – A, or for APOE4- carriers of rs1800764 – T or rs4291 – T, ACEis slowed cognitive decline independently of blood pressure variations. APOE4+ carriers were not responsive to treatment with ACEis. Conclusion: ACEis may slow cognitive decline for patients with AD, more remarkably for APOE4- carriers of specific ACE genotypes.


2018 ◽  
Vol 15 (4) ◽  
pp. 313-335 ◽  
Author(s):  
Serena Marcelli ◽  
Massimo Corbo ◽  
Filomena Iannuzzi ◽  
Lucia Negri ◽  
Fabio Blandini ◽  
...  

Background: Alzheimer's disease (AD) is a neurodegenerative disorder recognized as the most common cause of chronic dementia among the ageing population. AD is histopathologically characterized by progressive loss of neurons and deposits of insoluble proteins, primarily composed of amyloid-β pelaques and neurofibrillary tangles (NFTs). Methods: Several molecular processes contribute to the formation of AD cellular hallmarks. Among them, post-translational modifications (PTMs) represent an attractive mechanism underlying the formation of covalent bonds between chemical groups/peptides to target proteins, which ultimately result modified in their function. Most of the proteins related to AD undergo PTMs. Several recent studies show that AD-related proteins like APP, Aβ, tau, BACE1 undergo post-translational modifications. The effect of PTMs contributes to the normal function of cells, although aberrant protein modification, which may depend on many factors, can drive the onset or support the development of AD. Results: Here we will discuss the effect of several PTMs on the functionality of AD-related proteins potentially contributing to the development of AD pathology. Conclusion: We will consider the role of Ubiquitination, Phosphorylation, SUMOylation, Acetylation and Nitrosylation on specific AD-related proteins and, more interestingly, the possible interactions that may occur between such different PTMs.


GeroScience ◽  
2021 ◽  
Author(s):  
Caitlin S. Latimer ◽  
Nicole F. Liachko

AbstractAlzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.


Sign in / Sign up

Export Citation Format

Share Document